Powercore-V2.0/Powercore-V2.0 Firmware/pulse_generator.c

218 lines
7.3 KiB
C

#include "pico/stdlib.h"
#include "pulse_generator.h"
#include "CC_Charger.h"
#include "hardware/pwm.h"
#include "hardware/adc.h"
#define OUTPUT_EN_PIN 2
#define OUTPUT_CURRENT_TRIP_PIN 10
#define SPARK_THRESHOLD_PWM_PIN 14
#define SHORT_ALERT_PIN 1
#define PULSE_COUNTER_PWM_PIN 24
#define CAP_VSENSE_PIN 27
#define SHORT_THRESHOLD 513
bool cutting_enabled = false;
bool short_tripped = false;
//Enum to keep track of where we are in the pulse sequence
enum pulse_state{ WAITING_FOR_IGNITION,
SPARK_ON,
SPARK_OFF};
enum pulse_state output_state = SPARK_OFF;
//Pulse definition waveforms
uint32_t pulse_on_time = 0;
uint32_t pulse_off_time = 0;
bool iso_pulse_mode = false;
uint32_t pulse_timeout_time = 0; //time in us
alarm_id_t timeout_alarm_id;
//Pulse history tracking (512 cycles, 1 bit per cycle)
uint32_t pulse_history[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint32_t pulse_counter = 0;
//Prototype functions
int64_t begin_off_time(alarm_id_t id, void *user_data);
//Set the CC timing to the standard charging parameters
int64_t change_CC_timing(alarm_id_t id, void *user_data){
LIMIT_set_timing(185, 7, true);
return 0;
}
void short_alert_off() {
gpio_put(SHORT_ALERT_PIN, false);
}
void output_current_trip_irq(void) {
if (gpio_get_irq_event_mask(OUTPUT_CURRENT_TRIP_PIN) & GPIO_IRQ_EDGE_RISE) {
gpio_acknowledge_irq(OUTPUT_CURRENT_TRIP_PIN, GPIO_IRQ_EDGE_RISE);
gpio_set_irq_enabled(OUTPUT_CURRENT_TRIP_PIN, GPIO_IRQ_EDGE_RISE, false); //Turn off the interrupt on the ignition sense
output_state = SPARK_ON; //Update the pulse generator state
if(iso_pulse_mode == true){
cancel_alarm(timeout_alarm_id); //Turn off timeout alarm
add_alarm_in_us(pulse_on_time, begin_off_time, NULL, true); //Set alarm to turn off the pulse after the pulse on time
}
}
}
int64_t begin_on_time(alarm_id_t id, void *user_data){
disable_CC_timing(); //Turn off the CC Charger
if(cutting_enabled) { //Check that cutting is still enabled
output_state = WAITING_FOR_IGNITION; //Update pulse generator state
gpio_set_irq_enabled(OUTPUT_CURRENT_TRIP_PIN, GPIO_IRQ_EDGE_RISE, true); //Configure detection of the spark
if(iso_pulse_mode) { //Check pulse mode is iso-pulse
timeout_alarm_id = add_alarm_in_us(pulse_timeout_time, begin_off_time, NULL, true); //Set the alarm in case of pulse timeout
} else { //If pulse mode is iso-tonic
add_alarm_in_us(pulse_on_time, begin_off_time, NULL, true); //Set alarm for the off transition
}
gpio_put(OUTPUT_EN_PIN, true); //Turn on output FET
} else {
gpio_put(OUTPUT_EN_PIN, false);
}
return 0;
}
int64_t begin_off_time(alarm_id_t id, void *user_data){
gpio_put(OUTPUT_EN_PIN, false); //Turn off output MOSFET
gpio_set_irq_enabled(OUTPUT_CURRENT_TRIP_PIN, GPIO_IRQ_EDGE_RISE, false); //Disable the ignition sense irq
LIMIT_set_timing(97, 7, false); //Limit CC Charger PWM duty cycle to avoid inrush (was 97)
enable_CC_timing(true); //Start CC Charger
add_alarm_in_us(15, change_CC_timing, NULL, true); //Setup the alarm to correct CC charger timing
add_alarm_in_us(pulse_off_time-11, begin_on_time, NULL, true); //Setup the alarm to turn on the output MOSFET after the off time
pulse_counter -= pulse_history[0] & (uint32_t)0x1; //Subtract the 512th pulse state from the counter
for(int i = 0; i < 15; i++) {
pulse_history[i] = ((pulse_history[i+1] & (uint32_t)0x1) << 31) + (pulse_history[i] >> 1); //Binary shift the whole array (left shift each int and load in the first bit of the one above it)
}
pulse_history[15] = pulse_history[15] >> 1; //Binary shift the last value, done outside the for loop because nowhere to pull the MSB from
if(output_state == SPARK_ON) { //If successful spark then load a 1 into the MSB of the shift register and increment pulse counter
pulse_history[15] = pulse_history[15] + (1 << 31);
pulse_counter += 1;
}
output_state = SPARK_OFF; //Set state machine state to SPARK_OFF
if(pulse_counter > SHORT_THRESHOLD) {
cutting_enabled = false;
short_tripped = true;
disable_CC_timing();
disable_gate_driver();
gpio_put(SHORT_ALERT_PIN, true);
}
pwm_set_gpio_level(PULSE_COUNTER_PWM_PIN, pulse_counter<<2);
return 0;
}
void first_off_time(){
gpio_put(OUTPUT_EN_PIN, false); //Turn off output MOSFET
gpio_set_irq_enabled(OUTPUT_CURRENT_TRIP_PIN, GPIO_IRQ_EDGE_RISE, false); //Disable the ignition sense irq
LIMIT_set_timing(97, 7, false); //Limit CC Charger PWM duty cycle to avoid inrush (was 97)
enable_CC_timing(true); //Start CC Charger
add_alarm_in_us(15, change_CC_timing, NULL, true); //Setup the alarm to correct CC charger timing
add_alarm_in_us(pulse_off_time-11, begin_on_time, NULL, true); //Setup the alarm to turn on the output MOSFET after the off time
}
void begin_output_pulses(uint32_t on_time, uint32_t off_time, bool iso_pulse) {
//Load in the pulse parameters
pulse_on_time = on_time;
pulse_off_time = off_time;
pulse_timeout_time = pulse_on_time / 2;
iso_pulse_mode = iso_pulse;
for (int i = 0; i < 15; i++)
pulse_history[i] = 0;
pulse_counter = 0;
first_off_time();
}
void pulse_generator_init(uint32_t trip_current) {
gpio_init(OUTPUT_EN_PIN);
gpio_set_dir(OUTPUT_EN_PIN, GPIO_OUT);
gpio_init(OUTPUT_CURRENT_TRIP_PIN);
gpio_set_dir(OUTPUT_CURRENT_TRIP_PIN, GPIO_IN);
gpio_init(SHORT_ALERT_PIN);
gpio_set_dir(SHORT_ALERT_PIN, GPIO_OUT);
gpio_set_function(SPARK_THRESHOLD_PWM_PIN, GPIO_FUNC_PWM);
pwm_set_wrap(pwm_gpio_to_slice_num(SPARK_THRESHOLD_PWM_PIN), 1000);
pwm_set_gpio_level(SPARK_THRESHOLD_PWM_PIN, trip_current);
pwm_set_enabled(pwm_gpio_to_slice_num(SPARK_THRESHOLD_PWM_PIN), true);
gpio_set_function(PULSE_COUNTER_PWM_PIN, GPIO_FUNC_PWM);
pwm_set_wrap(pwm_gpio_to_slice_num(PULSE_COUNTER_PWM_PIN), 2500);
pwm_set_enabled(pwm_gpio_to_slice_num(PULSE_COUNTER_PWM_PIN), true);
gpio_add_raw_irq_handler(OUTPUT_CURRENT_TRIP_PIN, &output_current_trip_irq);
adc_gpio_init(CAP_VSENSE_PIN);
}