Order inter instructions into eval trains and sequences, optimize copyloops for size

This commit is contained in:
drmortalwombat 2022-03-15 18:45:34 +01:00
parent a4fa4cd482
commit dc0951ee9f
5 changed files with 522 additions and 49 deletions

View File

@ -163,6 +163,12 @@ exit /b %errorlevel%
..\release\oscar64 -e -O0 -n %~1
@if %errorlevel% neq 0 goto :error
..\release\oscar64 -e -Os %~1
@if %errorlevel% neq 0 goto :error
..\release\oscar64 -e -Os -n %~1
@if %errorlevel% neq 0 goto :error
..\release\oscar64 -e -O3 %~1
@if %errorlevel% neq 0 goto :error
@ -181,6 +187,9 @@ exit /b %errorlevel%
..\release\oscar64 -e -O0 %~1
@if %errorlevel% neq 0 goto :error
..\release\oscar64 -e -Os %~1
@if %errorlevel% neq 0 goto :error
..\release\oscar64 -e -O3 %~1
@if %errorlevel% neq 0 goto :error

View File

@ -412,6 +412,30 @@ static bool SameMem(const InterOperand& op1, const InterOperand& op2)
}
}
static bool SameMemRegion(const InterOperand& op1, const InterOperand& op2)
{
if (op1.mMemory != op2.mMemory)
return false;
switch (op1.mMemory)
{
case IM_LOCAL:
case IM_FPARAM:
case IM_PARAM:
case IM_FRAME:
case IM_FFRAME:
return true;
case IM_ABSOLUTE:
return true;
case IM_GLOBAL:
return op1.mLinkerObject == op2.mLinkerObject;
case IM_INDIRECT:
return op1.mTemp == op2.mTemp;
default:
return false;
}
}
// returns true if op2 is part of op1
static bool SameMemSegment(const InterOperand& op1, const InterOperand& op2)
{
@ -8426,7 +8450,7 @@ void InterCodeBasicBlock::PeepholeOptimization(void)
if (i != j)
mInstructions[j] = ins;
}
else if (mInstructions[i]->mCode == IC_LEA && mInstructions[i]->mSrc[0].mTemp == -1)
else if (mInstructions[i]->mCode == IC_LEA && (mInstructions[i]->mSrc[0].mTemp < 0 || mInstructions[i]->mSrc[1].mTemp < 0))
{
InterInstruction* ins(mInstructions[i]);
int j = i;
@ -8747,6 +8771,33 @@ void InterCodeBasicBlock::PeepholeOptimization(void)
} while (changed);
// sort stores up
do
{
changed = false;
for (int i = 0; i + 1 < mInstructions.Size(); i++)
{
if (mInstructions[i + 0]->mCode == IC_STORE && mInstructions[i + 1]->mCode == IC_STORE &&
!mInstructions[i + 0]->mVolatile && !mInstructions[i + 1]->mVolatile &&
// !CollidingMem(mInstructions[i + 0]->mSrc[1], mInstructions[i + 1]->mSrc[1]) &&
SameMemRegion(mInstructions[i + 0]->mSrc[1], mInstructions[i + 1]->mSrc[1]) &&
(mInstructions[i + 0]->mSrc[1].mVarIndex > mInstructions[i + 1]->mSrc[1].mVarIndex ||
mInstructions[i + 0]->mSrc[1].mVarIndex == mInstructions[i + 1]->mSrc[1].mVarIndex &&
mInstructions[i + 0]->mSrc[1].mIntConst > mInstructions[i + 1]->mSrc[1].mIntConst))
{
InterInstruction* ins = mInstructions[i + 1];
mInstructions[i + 1] = mInstructions[i + 0];
mInstructions[i + 0] = ins;
changed = true;
}
}
} while (changed);
if (mTrueJump) mTrueJump->PeepholeOptimization();
if (mFalseJump) mFalseJump->PeepholeOptimization();
}
@ -9746,6 +9797,21 @@ void InterCodeProcedure::Close(void)
}
#endif
#if 1
do {
TempForwarding();
} while (GlobalConstantPropagation());
ResetVisited();
mEntryBlock->PeepholeOptimization();
TempForwarding();
RemoveUnusedInstructions();
DisassembleDebug("Peephole optimized");
#endif
MapVariables();
DisassembleDebug("mapped variabled");

View File

@ -5124,8 +5124,56 @@ void NativeCodeBasicBlock::LoadValue(InterCodeProcedure* proc, const InterInstru
NativeCodeBasicBlock * NativeCodeBasicBlock::CopyValue(InterCodeProcedure* proc, const InterInstruction * ins, NativeCodeProcedure* nproc)
{
int size = ins->mConst.mOperandSize;
int msize = 4;
if (nproc->mGenerator->mCompilerOptions & COPT_OPTIMIZE_AUTO_UNROLL)
msize = 8;
else if (nproc->mGenerator->mCompilerOptions & COPT_OPTIMIZE_CODE_SIZE)
msize = 2;
#if 1
if (ins->mSrc[0].mTemp < 0 && ins->mSrc[1].mTemp < 0)
{
if (ins->mSrc[0].mMemory == IM_GLOBAL && ins->mSrc[1].mMemory == IM_FRAME)
{
int index = ins->mSrc[1].mVarIndex + ins->mSrc[1].mIntConst + 2;
int areg = BC_REG_STACK;
CheckFrameIndex(areg, index, size);
if (size <= msize)
{
for (int i = 0; i < size; i++)
{
mIns.Push(NativeCodeInstruction(ASMIT_LDY, ASMIM_IMMEDIATE, index + i));
mIns.Push(NativeCodeInstruction(ASMIT_LDA, ASMIM_ABSOLUTE, ins->mSrc[0].mIntConst + i, ins->mSrc[0].mLinkerObject));
mIns.Push(NativeCodeInstruction(ASMIT_STA, ASMIM_INDIRECT_Y, areg));
}
return this;
}
else
{
NativeCodeBasicBlock* lblock = nproc->AllocateBlock();
NativeCodeBasicBlock* eblock = nproc->AllocateBlock();
mIns.Push(NativeCodeInstruction(ASMIT_LDY, ASMIM_IMMEDIATE, index));
this->Close(lblock, nullptr, ASMIT_JMP);
lblock->mIns.Push(NativeCodeInstruction(ASMIT_LDA, ASMIM_ABSOLUTE_Y, ins->mSrc[0].mIntConst - index, ins->mSrc[0].mLinkerObject));
lblock->mIns.Push(NativeCodeInstruction(ASMIT_STA, ASMIM_INDIRECT_Y, areg));
lblock->mIns.Push(NativeCodeInstruction(ASMIT_INY, ASMIM_IMPLIED));
lblock->mIns.Push(NativeCodeInstruction(ASMIT_CPY, ASMIM_IMMEDIATE, (index + size) & 255));
lblock->Close(lblock, eblock, ASMIT_BNE);
return eblock;
}
}
}
#endif
int sreg, dreg;
if (ins->mSrc[0].mTemp < 0)
{
if (ins->mSrc[0].mMemory == IM_GLOBAL)
@ -5251,14 +5299,6 @@ NativeCodeBasicBlock * NativeCodeBasicBlock::CopyValue(InterCodeProcedure* proc,
dreg = BC_REG_TMP + proc->mTempOffset[ins->mSrc[1].mTemp];
}
int size = ins->mConst.mOperandSize;
int msize = 4;
if (nproc->mGenerator->mCompilerOptions & COPT_OPTIMIZE_AUTO_UNROLL)
msize = 8;
else if (nproc->mGenerator->mCompilerOptions & COPT_OPTIMIZE_CODE_SIZE)
msize = 2;
if (size <= msize)
{
for (int i = 0; i < size; i++)
@ -14055,10 +14095,160 @@ bool NativeCodeBasicBlock::OptimizeSelect(NativeCodeProcedure* proc)
return changed;
}
static bool CheckBlockCopySequence(const GrowingArray<NativeCodeInstruction>& ins, int si, int n)
{
if (si + 2 * n <= ins.Size() &&
ins[si + 0].mType == ASMIT_LDA && (ins[si + 0].mMode == ASMIM_ZERO_PAGE || ins[si + 0].mMode == ASMIM_ABSOLUTE) &&
ins[si + 1].mType == ASMIT_STA && (ins[si + 1].mMode == ASMIM_ZERO_PAGE || ins[si + 1].mMode == ASMIM_ABSOLUTE))
{
for (int i = 1; i < n; i++)
{
if (!(ins[si + 2 * i + 0].mType == ASMIT_LDA && ins[si + 2 * i + 0].mMode == ins[si + 0].mMode && ins[si + 2 * i + 0].mAddress == ins[si + 0].mAddress + i &&
ins[si + 2 * i + 1].mType == ASMIT_STA && ins[si + 2 * i + 1].mMode == ins[si + 1].mMode && ins[si + 2 * i + 1].mAddress == ins[si + 1].mAddress + i))
return false;
}
if (ins[si + 2 * n - 1].mLive & (LIVE_CPU_REG_A | LIVE_CPU_REG_Z))
return false;
return true;
}
else
return false;
}
bool NativeCodeBasicBlock::BlockSizeCopyReduction(NativeCodeProcedure* proc, int& si, int& di)
{
if ((proc->mGenerator->mCompilerOptions & COPT_OPTIMIZE_CODE_SIZE))
{
if (si + 1 < mIns.Size() &&
mIns[si + 0].mType == ASMIT_LDA && (mIns[si + 0].mMode == ASMIM_ZERO_PAGE || mIns[si + 0].mMode == ASMIM_ABSOLUTE) &&
mIns[si + 1].mType == ASMIT_STA && (mIns[si + 1].mMode == ASMIM_ZERO_PAGE || mIns[si + 1].mMode == ASMIM_ABSOLUTE))
{
int i = 1;
while (si + 2 * i + 1 < mIns.Size() &&
mIns[si + 2 * i + 0].mType == ASMIT_LDA && mIns[si + 2 * i + 0].mMode == mIns[si + 0].mMode && mIns[si + 2 * i + 0].mAddress == mIns[si + 0].mAddress + i &&
mIns[si + 2 * i + 1].mType == ASMIT_STA && mIns[si + 2 * i + 1].mMode == mIns[si + 1].mMode && mIns[si + 2 * i + 1].mAddress == mIns[si + 1].mAddress + i &&
!(mIns[si + 2 * i + 1].mLive & (LIVE_CPU_REG_A | LIVE_CPU_REG_Z)))
{
i++;
}
if (i > 2)
{
if (!(mIns[si + 0].mLive & LIVE_CPU_REG_X))
{
int k = 1;
while (CheckBlockCopySequence(mIns, si + 2 * k * i, i))
k++;
int sz = 3 + 4 * k;
for (int j = 0; j < k; j++)
{
NativeCodeInstruction lins = mIns[si + 2 * i * j + 0];
NativeCodeInstruction sins = mIns[si + 2 * i * j + 1];
if (lins.mMode == ASMIM_ZERO_PAGE)
lins.mMode = ASMIM_ZERO_PAGE_X;
else
{
lins.mMode = ASMIM_ABSOLUTE_X;
sz++;
}
if (sins.mMode == ASMIM_ZERO_PAGE)
sins.mMode = ASMIM_ZERO_PAGE_X;
else
{
sins.mMode = ASMIM_ABSOLUTE_X;
sz++;
}
if (j == 0)
mIns[di++] = NativeCodeInstruction(ASMIT_LDX, ASMIM_IMMEDIATE, i - 1);
mIns[di++] = lins;
mIns[di++] = sins;
}
mIns[di++] = NativeCodeInstruction(ASMIT_DEX, ASMIM_IMPLIED);
mIns[di++] = NativeCodeInstruction(ASMIT_BPL, ASMIM_RELATIVE, -sz);
si += 2 * i * k;
return true;
}
}
}
if (si + 2 < mIns.Size() &&
mIns[si + 0].mType == ASMIT_LDA && (mIns[si + 0].mMode == ASMIM_ZERO_PAGE || mIns[si + 0].mMode == ASMIM_ABSOLUTE) &&
mIns[si + 1].mType == ASMIT_STA && (mIns[si + 1].mMode == ASMIM_ZERO_PAGE || mIns[si + 1].mMode == ASMIM_ABSOLUTE) &&
mIns[si + 1].mType == ASMIT_STA && (mIns[si + 1].mMode == ASMIM_ZERO_PAGE || mIns[si + 1].mMode == ASMIM_ABSOLUTE))
{
int i = 1;
while (si + 3 * i + 2 < mIns.Size() &&
mIns[si + 3 * i + 0].mType == ASMIT_LDA && mIns[si + 3 * i + 0].mMode == mIns[si + 0].mMode && mIns[si + 3 * i + 0].mAddress == mIns[si + 0].mAddress + i &&
mIns[si + 3 * i + 1].mType == ASMIT_STA && mIns[si + 3 * i + 1].mMode == mIns[si + 1].mMode && mIns[si + 3 * i + 1].mAddress == mIns[si + 1].mAddress + i &&
mIns[si + 3 * i + 2].mType == ASMIT_STA && mIns[si + 3 * i + 2].mMode == mIns[si + 2].mMode && mIns[si + 3 * i + 2].mAddress == mIns[si + 2].mAddress + i &&
!(mIns[si + 3 * i + 2].mLive & (LIVE_CPU_REG_A | LIVE_CPU_REG_Z)))
{
i++;
}
if (i > 2)
{
if (!(mIns[si + 0].mLive & LIVE_CPU_REG_X))
{
NativeCodeInstruction lins = mIns[si + 0];
NativeCodeInstruction sins0 = mIns[si + 1];
NativeCodeInstruction sins1 = mIns[si + 2];
int sz = 9;
if (lins.mMode == ASMIM_ZERO_PAGE)
lins.mMode = ASMIM_ZERO_PAGE_X;
else
{
lins.mMode = ASMIM_ABSOLUTE_X;
sz++;
}
if (sins0.mMode == ASMIM_ZERO_PAGE)
sins0.mMode = ASMIM_ZERO_PAGE_X;
else
{
sins0.mMode = ASMIM_ABSOLUTE_X;
sz++;
}
if (sins1.mMode == ASMIM_ZERO_PAGE)
sins1.mMode = ASMIM_ZERO_PAGE_X;
else
{
sins1.mMode = ASMIM_ABSOLUTE_X;
sz++;
}
mIns[di++] = NativeCodeInstruction(ASMIT_LDX, ASMIM_IMMEDIATE, i - 1);
mIns[di++] = lins;
mIns[di++] = sins0;
mIns[di++] = sins1;
mIns[di++] = NativeCodeInstruction(ASMIT_DEX, ASMIM_IMPLIED);
mIns[di++] = NativeCodeInstruction(ASMIT_BPL, ASMIM_RELATIVE, -sz);
si += 3 * i;
return true;
}
}
}
}
return false;
}
// Size reduction violating various assumptions such as no branches in basic blocks
// must be last step before actual assembly
void NativeCodeBasicBlock::BlockSizeReduction(void)
void NativeCodeBasicBlock::BlockSizeReduction(NativeCodeProcedure* proc)
{
if (!mVisited)
{
@ -14412,6 +14602,10 @@ void NativeCodeBasicBlock::BlockSizeReduction(void)
{
mIns[j++] = mIns[i++];
i++;
}
else if (BlockSizeCopyReduction(proc, i, j))
{
}
else
mIns[j++] = mIns[i++];
@ -14496,6 +14690,8 @@ void NativeCodeBasicBlock::BlockSizeReduction(void)
ximm = false;
else if (mIns[i].mType == ASMIT_JSR)
yimm = ximm = false;
else if (mIns[i].mMode == ASMIM_RELATIVE && mIns[i].mAddress < 0)
yimm = ximm = false;
}
#endif
@ -14704,9 +14900,9 @@ void NativeCodeBasicBlock::BlockSizeReduction(void)
#endif
if (mTrueJump)
mTrueJump->BlockSizeReduction();
mTrueJump->BlockSizeReduction(proc);
if (mFalseJump)
mFalseJump->BlockSizeReduction();
mFalseJump->BlockSizeReduction(proc);
}
}
@ -18622,8 +18818,6 @@ void NativeCodeProcedure::Compile(InterCodeProcedure* proc)
mExitBlock->mIns.Pop();
CompressTemporaries();
int frameSpace = tempSave;
tempSave = proc->mTempSize > 16 ? proc->mTempSize - 16 : 0;
@ -19201,9 +19395,11 @@ void NativeCodeProcedure::Optimize(void)
cnt++;
} while (changed);
CompressTemporaries();
#if 1
ResetVisited();
mEntryBlock->BlockSizeReduction();
mEntryBlock->BlockSizeReduction(this);
#endif
#endif

View File

@ -158,7 +158,8 @@ public:
bool RemoveNops(void);
bool PeepHoleOptimizer(NativeCodeProcedure* proc, int pass);
void BlockSizeReduction(void);
void BlockSizeReduction(NativeCodeProcedure* proc);
bool BlockSizeCopyReduction(NativeCodeProcedure* proc, int & si, int & di);
bool OptimizeSimpleLoopInvariant(NativeCodeProcedure* proc);
bool OptimizeSimpleLoopInvariant(NativeCodeProcedure* proc, NativeCodeBasicBlock * prevBlock, NativeCodeBasicBlock* exitBlock);

View File

@ -8,84 +8,115 @@
#include <string.h>
#include <stdlib.h>
// Graphics areas in bank 3
byte * const Screen = (byte *)0xc800;
byte * const Font = (byte *)0xe000;
byte * const TextFont = (byte *)0xe800;
byte * const Color = (byte *)0xd800;
byte * const Sprites = (byte *)0xd000;
// Character set
// Character set for scrolling background
char charset[2048] = {
#embed "../resources/hscrollshmupchars.bin"
};
// Character set for status line
char tcharset[2048] = {
#embed "../resources/breakoutchars.bin"
};
// Tileset for scrolling background
char tileset[] = {
#embed "../resources/hscrollshmuptiles.bin"
};
// Tilemap for scrolling background
char tilemap[128 * 5] = {
#embed "../resources/hscrollshmupmap.bin"
};
// Spriteset for player and enemies
char spriteset[4096] = {
#embed 4096 0 "../resources/hscrollshmupsprites.bin"
};
// Converted tileset
char xtileset[16][64];
// Converted tilemat
char xtilemap[144 * 5];
// Horizontal position for the stars in the background
char stars[24];
// Enemy/shot collision check table
char xcollision[256];
// Align the table data to avoid page crossing when indexing
#pragma align(xtileset, 64);
#pragma align(xcollision, 256)
// Raster interrupts
RIRQCode bottom, top;
// List of enemies
struct Enemy
{
int px;
byte py;
sbyte dx;
byte state, pad0, pad1, pad2;
int px; // absolute horizontal position
byte py; // absolute vertical position
sbyte dx; // horizontal speed
byte state; // state of the enemy
byte pad0, pad1, pad2; // padding to align at 8 bytes
} enemies[5];
// Shot data
struct Shot
{
byte ty, x, ry, n;
sbyte dx; // Direction of shot
Shot * next; // Next shot in list
} shots[18]; // Pre-allocated shots
Shot * freeShot;
// Player data
struct Player
{
int spx;
sbyte vpx;
sbyte ax;
char aphase;
char spy;
char fdelay;
int spx; // absolute screen position
sbyte vpx; // horizontal velocity
sbyte ax; // acceleration
char aphase; // animation phase
char spy; // vertical position
char fdelay; // auto fire delay
} player;
// Game state
enum GameState
{
GS_START,
GS_START, // Waiting for the game to start
GS_READY, // Getting ready
GS_PLAYING,
GS_EXPLODING,
GS_PLAYING, // Actually playing
GS_EXPLODING, // Player ship is exploding
GS_GAME_OVER
GS_GAME_OVER // Game is over
};
// Game data
struct Game
{
GameState state;
char count;
char edelay;
char ecount;
char escore;
char lives;
GameState state; // Current game state
char count; // Countdown for states that change after delay
char edelay; // enemy wave delay
char ecount; // number of live enemies
char escore; // score not yet accumulated
char lives; // number of player lives left
} game;
// Sound effect for a player shot
SIDFX SIDFXFire[1] = {{
8000, 1000,
SID_CTRL_GATE | SID_CTRL_SAW,
@ -95,6 +126,7 @@ SIDFX SIDFXFire[1] = {{
4, 30
}};
// Sound effect for enemy explosion
SIDFX SIDFXExplosion[1] = {{
1000, 1000,
SID_CTRL_GATE | SID_CTRL_NOISE,
@ -104,6 +136,7 @@ SIDFX SIDFXExplosion[1] = {{
8, 40
}};
// Sound effect for player explosion
SIDFX SIDFXBigExplosion[3] = {
{
1000, 1000,
@ -142,14 +175,19 @@ void status_init(void)
Screen[i] = StatusText[i];
}
// update the status line
void status_update(void)
{
// Set number of lives
Screen[38] = game.lives + '0';
// Increment the score from a given digit on
if (game.escore)
{
char at, val = 1;
// Check for 100s, 10s and 1s and set digit to increment
// appropriately
if (game.escore >= 100)
{
game.escore -= 100;
@ -216,12 +254,20 @@ void score_reset(void)
// unpack tiles into a fast accessible format
void tiles_unpack(void)
{
// The tileset in the loaded binary is organized as an array
// of arrays of 16 characters. These loops reorganize the data
// into 16 arrays of arrays of char. This gives direct 8bit
// index access to each char of a given tile
for(char t=0; t<64; t++)
{
for(char i=0; i<16; i++)
xtileset[i][t] = tileset[16 * t + i];
}
// The left side of the tilemap is duplicated to avoid
// overflow checks at the right border
for(char y=0; y<5; y++)
{
for(char x=0; x<144; x++)
@ -230,6 +276,10 @@ void tiles_unpack(void)
}
}
// The shots are stored with row and column, this array allows for
// easy check of collision with an enemy by subtracting the
// character column of the enemy
for(char i=0; i<160; i+=40)
{
for(char j=0; j<3; j++)
@ -237,35 +287,46 @@ void tiles_unpack(void)
}
}
// Draw the tiles of one tile row with no horizontal offset
// into line dp
void tiles_draw0(char * dp, char * tm)
{
// Second, third and final target line
char * ap = dp + 40;
char * bp = dp + 80;
char * cp = dp + 120;
// target column
char q = 0;
for(char x=0; x<10; x++)
{
// Get tile
char ti = tm[x];
// First tile column
dp[ q] = xtileset[ 0][ti];
ap[ q] = xtileset[ 4][ti];
bp[ q] = xtileset[ 8][ti];
cp[ q] = xtileset[12][ti];
q++;
// Second tile column
dp[ q] = xtileset[ 1][ti];
ap[ q] = xtileset[ 5][ti];
bp[ q] = xtileset[ 9][ti];
cp[ q] = xtileset[13][ti];
q++;
// Third tile column
dp[ q] = xtileset[ 2][ti];
ap[ q] = xtileset[ 6][ti];
bp[ q] = xtileset[10][ti];
cp[ q] = xtileset[14][ti];
q++;
// Final tile column
dp[ q] = xtileset[ 3][ti];
ap[ q] = xtileset[ 7][ti];
bp[ q] = xtileset[11][ti];
@ -274,6 +335,9 @@ void tiles_draw0(char * dp, char * tm)
}
}
// Draw the tiles of one tile row with one char horizontal offset
// into line dp
void tiles_draw3(char * dp, char * tm)
{
char ti = tm[0];
@ -285,14 +349,17 @@ void tiles_draw3(char * dp, char * tm)
char q = 0;
for(char x=1; x<11; x++)
{
// Start with the fourth column of the previous tile
dp[ q] = xtileset[ 3][ti];
ap[ q] = xtileset[ 7][ti];
bp[ q] = xtileset[11][ti];
cp[ q] = xtileset[15][ti];
q++;
// Advance to next tile
ti = tm[x];
// Now three columns of the new tile
dp[ q] = xtileset[ 0][ti];
ap[ q] = xtileset[ 4][ti];
bp[ q] = xtileset[ 8][ti];
@ -391,64 +458,73 @@ void tiles_draw1(char * dp, char * tm)
}
}
struct Shot
{
byte ty, x, ry, n;
sbyte dx;
Shot * next;
} shots[18];
Shot * freeShot;
// Initialize the list of shots
void shot_init(void)
{
// First shot is just a list head and doubles
// as the last shot in the list as well, so a
// circular list
shots[0].next = shots;
shots[0].ty = 6;
// Build list of free shots
freeShot = shots + 1;
for(char i=1; i<17; i++)
shots[i].next = shots + i + 1;
shots[17].next = nullptr;
}
// Draw one shot
inline void shot_draw(char * dp, char i, char xp, char yp)
{
// Character below the shot
char c = dp[xp];
// We know there are only 20 shots
__assume(i < 20);
// Character code for background with overlayed shot
dp[xp] = i | 0xe0;
// Source and target character code
char * fsp = Font + 8 * c;
char * fdp = (Font + 0xe0 * 8) + 8 * i;
// Copy the background character into the shot character
fdp[0] = fsp[0]; fdp[1] = fsp[1]; fdp[2] = fsp[2]; fdp[3] = fsp[3];
fdp[4] = fsp[4]; fdp[5] = fsp[5]; fdp[6] = fsp[6]; fdp[7] = fsp[7];
// Put the line
fdp[yp] = 0x00;
}
// Add a shot to the active list
void shot_add(int sx, char sy, sbyte dx)
{
// Actual screen position
char py = sy - 14;
char gy = py >> 5;
char ey = (py >> 3) & 3;
char ry = py & 7;
// Get a new shot structure from the free list
Shot * s = freeShot;
freeShot = s->next;
// Insert it into the sorted list of active shots
Shot * p = shots;
while (p->next->ty < gy)
p = p->next;
s->next = p->next;
p->next = s;
// Init structure
s->ty = gy;
s->ry = ry;
s->dx = dx;
// Horizontal start postion based on player sprite
if (dx < 0)
{
char x = (sx) >> 3;
@ -463,33 +539,47 @@ void shot_add(int sx, char sy, sbyte dx)
}
}
// Draw the screen with tiles, stars and shots at the given
// absolute pixel position
void tiles_draw(unsigned x)
{
// vic.color_border++;
// Wait for the raster to be below the first tile row
vic_waitTop();
while (vic.raster < 106)
;
// vic.color_border--;
// Pixel scroll offset
char xs = 7 - (x & 7);
// Update raster IRQ for next screen
rirq_data(&top, 1, VIC_CTRL2_MCM | xs);
rirq_data(&top, 2, ~(1 << xs));
// Character position
x >>= 3;
// Tile position and tile offset
char xl = x >> 2, xr = x & 3;
char yl = 0;
char ci = 0;
// First shot in list
Shot * ps = shots;
// Loop over five rows of 4x4 tiles
for(int iy=0; iy<5; iy++)
{
// Target position
char * dp = Screen + 120 + 160 * iy;
char * cp = Color + 120 + 160 * iy;
// Tile source position
char * tp = xtilemap + xl + 144 * iy;
// Draw tiles with given char offset
switch (xr)
{
case 0:
@ -508,6 +598,9 @@ void tiles_draw(unsigned x)
__assume(false);
}
// Draw the four stars for the tile row, empty
// space has char code zero
char k = stars[yl + 0] + 0;
if (dp[k])
cp[k] = 8;
@ -544,17 +637,26 @@ void tiles_draw(unsigned x)
dp[k] = 0xf8;
}
// Loop over all shots in the current tile row
Shot *ss = ps->next;
while (ss->ty == iy)
{
// Advance position
ss->x += ss->dx;
// Decrement live
ss->n--;
// Draw the shot
shot_draw(dp, ci++, ss->x, ss->ry);
if (ss->n)
ps = ss;
else
{
// End of live, remove from the list
ps->next = ss->next;
ss->next = freeShot;
freeShot = ss;
@ -562,41 +664,54 @@ void tiles_draw(unsigned x)
ss = ps->next;
}
// Next tile row
yl += 4;
}
}
// Intitialize player
void player_init(void)
{
// Set up start position and direction
player.vpx = 0;
player.ax = 1;
player.spy = 100;
player.fdelay = 0;
// Show sprites
spr_set(0, true, 160, 100, 64, VCOL_BLUE, true, false, false);
spr_set(7, true, 160, 100, 64 + 16, VCOL_MED_GREY, true, false, false);
// Background has priority before shadow sprite
vic.spr_priority = 0x80;
}
// Use the joystick to control the player
void player_control(void)
{
// Poll the joystick
joy_poll(0);
// Change horizontal direction if joystick left or right
if (joyx[0] != 0)
player.ax = joyx[0];
// Change vertical position if joystick up or down
player.spy += 2 * joyy[0];
if (player.spy < 14)
player.spy = 14;
else if (player.spy > 14 + 159)
player.spy = 14 + 159;
// Animate/accelerate based on requested direction
if (player.ax > 0)
{
// Speed up until max speed
if (player.vpx < 32)
player.vpx++;
// Adapt animation phase for direction change
if (player.aphase > 0 && player.aphase < 16)
player.aphase--;
else if (player.aphase >= 16 && player.aphase < 32)
@ -614,40 +729,50 @@ void player_control(void)
}
// Modulus animation phase
player.aphase &= 31;
// Set player sprite image based on animation phase
spr_image(0, 64 + (player.aphase >> 1));
spr_image(7, 80 + (player.aphase >> 1));
// Player position based on speed
int px = 148 - 4 * player.vpx;
// Check for player shooting
if (player.fdelay)
player.fdelay--;
else if (joyb[0])
{
if (player.aphase < 4 || player.aphase >= 29)
{
// Fire right
shot_add(px, player.spy, 1);
sidfx_play(0, SIDFXFire, 1);
}
else if (player.aphase >= 13 && player.aphase < 20)
{
// Fire left
shot_add(px, player.spy, -1);
sidfx_play(0, SIDFXFire, 1);
}
// Delay next shot by six frames
player.fdelay = 6;
}
// Move player sprite
spr_move(0, 24 + px, 50 + player.spy);
spr_move(7, 32 + px, 58 + player.spy);
}
// Advance absolute player/screen position
void player_move()
{
player.spx += player.vpx >> 2;
}
// Initialize game structure
void game_init(void)
{
game.edelay = 80;
@ -657,23 +782,31 @@ void game_init(void)
player.spx = 40;
}
// Move all active enemies
void enemies_move(void)
{
// Loop over potential five enemies
for(char i=0; i<5; i++)
{
// Check if enemy is active
if (enemies[i].state)
{
// Advance position
enemies[i].px += enemies[i].dx;
// Check for relative position to player
int rx = enemies[i].px - player.spx;
if (rx < -192 || rx >= 480)
{
// Enemy is outside scope, remove it from active set
enemies[i].state = 0;
game.ecount--;
spr_show(2 + i, false);
}
else
{
// Move enemy sprite
spr_move(2 + i, rx + 24, enemies[i].py + 50);
if (enemies[i].state & 0x80)
@ -682,11 +815,13 @@ void enemies_move(void)
}
else
{
// Enemy is eploding
spr_color(2 + i, VCOL_YELLOW);
spr_image(2 + i, 127 - (enemies[i].state >> 2));
enemies[i].state--;
if (enemies[i].state == 0)
{
// Explosion complete, remove from active set
spr_show(2 + i, false);
game.ecount--;
}
@ -696,49 +831,75 @@ void enemies_move(void)
}
}
// Spwan one new enemy outside screen
void enemies_spawn(void)
{
// Seed for enemy
char u = rand();
// Index of enemy
char e = game.ecount;
// We know there are only five, help the compiler
// with the indexing
__assume(e < 5);
// Speed of enemy
sbyte v = 1 + (u & 3);
// Vertical position
enemies[e].py = 29 + 32 * e;
// Speed and direction
enemies[e].dx = player.vpx < 0 ? v : -v;
// Position left or right outside
enemies[e].px = (player.vpx < 0 ? player.spx - 56 : player.spx + 320) + ((u >> 1) & 31);
// Initial status is alive
enemies[e].state = 0x80;
// Set enemy sprite outside screen
int rx = enemies[e].px - player.spx;
spr_set(2 + e, true, rx + 24, enemies[e].py + 50, player.vpx < 0 ? 97 : 96, VCOL_LT_BLUE, true, false, false);
// One more enemy ready
game.ecount++;
}
// Remove and reset all enemies
void enemies_reset(void)
{
for(char i=0; i<5; i++)
{
// Hide sprite and clearout state
spr_show(2 + i, false);
enemies[i].state = 0x00;
}
// Delay for next enemy to show up
game.edelay = 80;
game.ecount = 0;
}
// Check collision player with enemy
bool player_check(void)
{
// Index of enemy in players tile row
char e = (player.spy - 14) >> 5;
// Is it active?
if (e < 5 && (enemies[e].state & 0x80))
{
// Relative horizontal position
int rx = enemies[e].px - player.spx;
rx -= 148 - 4 * player.vpx;
// Too close, we are toast
if (rx >= - 12 && rx <= 12)
{
// Enemy explodes as well
enemies[e].state = 64;
return true;
}
@ -747,18 +908,28 @@ bool player_check(void)
return false;
}
// Check collision shot with enemies
bool shots_check(void)
{
// First shot in list (actually the head, or the shot
// before the current one)
Shot * ps = shots;
bool hit = false;
// Loop over all five enemies
for(char i=0; i<5; i++)
{
// Only check live and active enemies
if (enemies[i].state & 0x80)
{
// Enemy position on screen
sbyte rx = (enemies[i].px - player.spx) >> 3;
// Check for actually on screen
if (rx >= 0 && rx < 40)
{
// Ignore all shots in tile rows before the
// current row
Shot * ss = ps->next;
while (ss->ty < i)
{
@ -766,16 +937,25 @@ bool shots_check(void)
ss = ps->next;
}
// Now loop over all shots in the current tile row
while (ss->ty == i)
{
// Check horizontal collision
if (xcollision[(char)(ss->x - rx)])
{
// Remove shot from active list and put it into free list
ps->next = ss->next;
ss->next = freeShot;
freeShot = ss;
// Mark enemy as exploding
enemies[i].state = 64;
// Increment score
game.escore++;
hit = true;
// Done checking this row
break;
}
@ -789,6 +969,7 @@ bool shots_check(void)
return hit;
}
// Advance game state
void game_state(GameState state)
{
// Set new state
@ -823,8 +1004,10 @@ void game_state(GameState state)
}
}
// Work for current frame
void game_loop()
{
// Draw the background
tiles_draw(player.spx & 4095);
switch (game.state)
@ -832,15 +1015,20 @@ void game_loop()
case GS_START:
break;
case GS_READY:
// Scroll to start position
player.spx -= game.count >> 2;
if (!--game.count)
game_state(GS_PLAYING);
break;
case GS_PLAYING:
// Control player
player_control();
// Move player
player_move();
// Check for new enemies
if (game.edelay)
{
game.edelay--;
@ -849,30 +1037,38 @@ void game_loop()
}
else
{
// Move enemies
enemies_move();
// All enemies gone, update delay for next squad
if (!game.ecount)
game.edelay = 64 + (rand() & 63);
}
// Check shots
if (shots_check())
sidfx_play(1, SIDFXExplosion, 1);
// Check player enemy collision
if (player_check())
game_state(GS_EXPLODING);
break;
case GS_EXPLODING:
// Animate player
spr_image(0, 127 - (game.count >> 2));
spr_image(7, 127 - (game.count >> 2));
player_move();
enemies_move();
// Wait for explostion to finish
if (!--game.count)
{
enemies_reset();
game.lives--;
// More lives?
if (game.lives)
game_state(GS_READY);
else
@ -886,9 +1082,11 @@ void game_loop()
}
// vic.color_border--;
// Update sound effects
sidfx_loop();
// vic.color_border++;
// Update status line
status_update();
}
@ -956,10 +1154,13 @@ int main(void)
memset(Color, 0, 80);
memset(Color + 80, 8, 920);
// Init sound effects state machine
sidfx_init();
// Full volume
sid.fmodevol = 15;
// Init status line
status_init();
// initialize background parallax stars