Add xf86GTFMode().
This should probably be shared like xf86CVTMode().
This commit is contained in:
		
							parent
							
								
									4cb4817c10
								
							
						
					
					
						commit
						ca5625b911
					
				|  | @ -949,6 +949,7 @@ _X_HIDDEN void *xfree86LookupTab[] = { | |||
|     SYMFUNC(xf86CrtcSetSizeRange) | ||||
|     SYMFUNC(xf86CrtcScreenInit) | ||||
|     SYMFUNC(xf86CVTMode) | ||||
|     SYMFUNC(xf86GTFMode) | ||||
|     SYMFUNC(xf86DisableUnusedFunctions) | ||||
|     SYMFUNC(xf86DPMSSet) | ||||
|     SYMFUNC(xf86DuplicateMode) | ||||
|  |  | |||
|  | @ -5,6 +5,7 @@ libxf86modes_a_SOURCES = \ | |||
| 	xf86Crtc.h \
 | ||||
| 	xf86Cursors.c \
 | ||||
| 	xf86cvt.c \
 | ||||
| 	xf86gtf.c \
 | ||||
| 	xf86DiDGA.c \
 | ||||
| 	xf86EdidModes.c \
 | ||||
| 	xf86Modes.c \
 | ||||
|  |  | |||
|  | @ -62,6 +62,7 @@ DisplayModePtr xf86ModesAdd(DisplayModePtr modes, DisplayModePtr new); | |||
| DisplayModePtr xf86DDCGetModes(int scrnIndex, xf86MonPtr DDC); | ||||
| DisplayModePtr xf86CVTMode(int HDisplay, int VDisplay, float VRefresh, | ||||
| 			   Bool Reduced, Bool Interlaced); | ||||
| DisplayModePtr xf86GTFMode(int h_pixels, int v_lines, float freq, int interlaced, int margins); | ||||
| 
 | ||||
| void | ||||
| xf86ValidateModesFlags(ScrnInfoPtr pScrn, DisplayModePtr modeList, | ||||
|  |  | |||
|  | @ -0,0 +1,384 @@ | |||
| /*
 | ||||
|  * gtf.c  Generate mode timings using the GTF Timing Standard | ||||
|  * | ||||
|  * gcc gtf.c -o gtf -lm -Wall | ||||
|  * | ||||
|  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com | ||||
|  * All rights reserved. | ||||
|  *  | ||||
|  * Redistribution and use in source and binary forms, with or without | ||||
|  * modification, are permitted provided that the following conditions | ||||
|  * are met: | ||||
|  *  | ||||
|  * o Redistributions of source code must retain the above copyright | ||||
|  *   notice, this list of conditions and the following disclaimer. | ||||
|  * o Redistributions in binary form must reproduce the above copyright | ||||
|  *   notice, this list of conditions and the following disclaimer | ||||
|  *   in the documentation and/or other materials provided with the | ||||
|  *   distribution. | ||||
|  * o Neither the name of NVIDIA nor the names of its contributors | ||||
|  *   may be used to endorse or promote products derived from this | ||||
|  *   software without specific prior written permission. | ||||
|  * | ||||
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||||
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT | ||||
|  * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND | ||||
|  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL | ||||
|  * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | ||||
|  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, | ||||
|  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | ||||
|  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||||
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | ||||
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN | ||||
|  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | ||||
|  * POSSIBILITY OF SUCH DAMAGE. | ||||
|  * | ||||
|  * This program is based on the Generalized Timing Formula(GTF TM) | ||||
|  * Standard Version: 1.0, Revision: 1.0 | ||||
|  * | ||||
|  * The GTF Document contains the following Copyright information: | ||||
|  * | ||||
|  * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards | ||||
|  * Association. Duplication of this document within VESA member | ||||
|  * companies for review purposes is permitted. All other rights | ||||
|  * reserved. | ||||
|  * | ||||
|  * While every precaution has been taken in the preparation | ||||
|  * of this standard, the Video Electronics Standards Association and | ||||
|  * its contributors assume no responsibility for errors or omissions, | ||||
|  * and make no warranties, expressed or implied, of functionality | ||||
|  * of suitability for any purpose. The sample code contained within | ||||
|  * this standard may be used without restriction. | ||||
|  * | ||||
|  *  | ||||
|  * | ||||
|  * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive) | ||||
|  * implementation of the GTF Timing Standard, is available at: | ||||
|  * | ||||
|  * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
 | ||||
|  */ | ||||
| 
 | ||||
| /* Ruthlessly converted to server code by Adam Jackson <ajax@redhat.com> */ | ||||
| 
 | ||||
| #ifdef HAVE_XORG_CONFIG_H | ||||
| # include <xorg-config.h> | ||||
| #endif | ||||
| 
 | ||||
| #include "xf86.h" | ||||
| #include "xf86Modes.h" | ||||
| #include <string.h> | ||||
| 
 | ||||
| #define MARGIN_PERCENT    1.8   /* % of active vertical image                */ | ||||
| #define CELL_GRAN         8.0   /* assumed character cell granularity        */ | ||||
| #define MIN_PORCH         1     /* minimum front porch                       */ | ||||
| #define V_SYNC_RQD        3     /* width of vsync in lines                   */ | ||||
| #define H_SYNC_PERCENT    8.0   /* width of hsync as % of total line         */ | ||||
| #define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */ | ||||
| #define M                 600.0 /* blanking formula gradient                 */ | ||||
| #define C                 40.0  /* blanking formula offset                   */ | ||||
| #define K                 128.0 /* blanking formula scaling factor           */ | ||||
| #define J                 20.0  /* blanking formula scaling factor           */ | ||||
| 
 | ||||
| /* C' and M' are part of the Blanking Duty Cycle computation */ | ||||
| 
 | ||||
| #define C_PRIME           (((C - J) * K/256.0) + J) | ||||
| #define M_PRIME           (K/256.0 * M) | ||||
| 
 | ||||
| 
 | ||||
| /*
 | ||||
|  * xf86GTFMode() - as defined by the GTF Timing Standard, compute the | ||||
|  * Stage 1 Parameters using the vertical refresh frequency.  In other | ||||
|  * words: input a desired resolution and desired refresh rate, and | ||||
|  * output the GTF mode timings. | ||||
|  * | ||||
|  * XXX All the code is in place to compute interlaced modes, but I don't | ||||
|  * feel like testing it right now. | ||||
|  * | ||||
|  * XXX margin computations are implemented but not tested (nor used by | ||||
|  * XServer of fbset mode descriptions, from what I can tell). | ||||
|  */ | ||||
| 
 | ||||
| _X_EXPORT DisplayModePtr | ||||
| xf86GTFMode(int h_pixels, int v_lines, float freq, int interlaced, int margins) | ||||
| { | ||||
|     DisplayModeRec *mode = xnfcalloc(1, sizeof(DisplayModeRec)); | ||||
| 
 | ||||
|     float h_pixels_rnd; | ||||
|     float v_lines_rnd; | ||||
|     float v_field_rate_rqd; | ||||
|     float top_margin; | ||||
|     float bottom_margin; | ||||
|     float interlace; | ||||
|     float h_period_est; | ||||
|     float vsync_plus_bp; | ||||
|     float v_back_porch; | ||||
|     float total_v_lines; | ||||
|     float v_field_rate_est; | ||||
|     float h_period; | ||||
|     float v_field_rate; | ||||
|     float v_frame_rate; | ||||
|     float left_margin; | ||||
|     float right_margin; | ||||
|     float total_active_pixels; | ||||
|     float ideal_duty_cycle; | ||||
|     float h_blank; | ||||
|     float total_pixels; | ||||
|     float pixel_freq; | ||||
|     float h_freq; | ||||
| 
 | ||||
|     float h_sync; | ||||
|     float h_front_porch; | ||||
|     float v_odd_front_porch_lines; | ||||
| 
 | ||||
|     /*  1. In order to give correct results, the number of horizontal
 | ||||
|      *  pixels requested is first processed to ensure that it is divisible | ||||
|      *  by the character size, by rounding it to the nearest character | ||||
|      *  cell boundary: | ||||
|      * | ||||
|      *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND]) | ||||
|      */ | ||||
|      | ||||
|     h_pixels_rnd = rint((float) h_pixels / CELL_GRAN) * CELL_GRAN; | ||||
|      | ||||
|     /*  2. If interlace is requested, the number of vertical lines assumed
 | ||||
|      *  by the calculation must be halved, as the computation calculates | ||||
|      *  the number of vertical lines per field. In either case, the | ||||
|      *  number of lines is rounded to the nearest integer. | ||||
|      *    | ||||
|      *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0), | ||||
|      *                                     ROUND([V LINES],0)) | ||||
|      */ | ||||
| 
 | ||||
|     v_lines_rnd = interlaced ? | ||||
|             rint((float) v_lines) / 2.0 : | ||||
|             rint((float) v_lines); | ||||
|      | ||||
|     /*  3. Find the frame rate required:
 | ||||
|      * | ||||
|      *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2, | ||||
|      *                                          [I/P FREQ RQD]) | ||||
|      */ | ||||
| 
 | ||||
|     v_field_rate_rqd = interlaced ? (freq * 2.0) : (freq); | ||||
| 
 | ||||
|     /*  4. Find number of lines in Top margin:
 | ||||
|      * | ||||
|      *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y", | ||||
|      *          ROUND(([MARGIN%]/100*[V LINES RND]),0), | ||||
|      *          0) | ||||
|      */ | ||||
| 
 | ||||
|     top_margin = margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0); | ||||
| 
 | ||||
|     /*  5. Find number of lines in Bottom margin:
 | ||||
|      * | ||||
|      *  [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y", | ||||
|      *          ROUND(([MARGIN%]/100*[V LINES RND]),0), | ||||
|      *          0) | ||||
|      */ | ||||
| 
 | ||||
|     bottom_margin = margins ? rint(MARGIN_PERCENT/100.0 * v_lines_rnd) : (0.0); | ||||
| 
 | ||||
|     /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
 | ||||
|      *    | ||||
|      *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0)) | ||||
|      */ | ||||
| 
 | ||||
|     interlace = interlaced ? 0.5 : 0.0; | ||||
| 
 | ||||
|     /*  7. Estimate the Horizontal period
 | ||||
|      * | ||||
|      *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) / | ||||
|      *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) + | ||||
|      *                     [MIN PORCH RND]+[INTERLACE]) * 1000000 | ||||
|      */ | ||||
| 
 | ||||
|     h_period_est = (((1.0/v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP/1000000.0)) | ||||
|                     / (v_lines_rnd + (2*top_margin) + MIN_PORCH + interlace) | ||||
|                     * 1000000.0); | ||||
| 
 | ||||
|     /*  8. Find the number of lines in V sync + back porch:
 | ||||
|      * | ||||
|      *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0) | ||||
|      */ | ||||
| 
 | ||||
|     vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP/h_period_est); | ||||
| 
 | ||||
|     /*  9. Find the number of lines in V back porch alone:
 | ||||
|      * | ||||
|      *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND] | ||||
|      * | ||||
|      *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]? | ||||
|      */ | ||||
|      | ||||
|     v_back_porch = vsync_plus_bp - V_SYNC_RQD; | ||||
|      | ||||
|     /*  10. Find the total number of lines in Vertical field period:
 | ||||
|      * | ||||
|      *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] + | ||||
|      *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] + | ||||
|      *                    [MIN PORCH RND] | ||||
|      */ | ||||
| 
 | ||||
|     total_v_lines = v_lines_rnd + top_margin + bottom_margin + vsync_plus_bp + | ||||
|         interlace + MIN_PORCH; | ||||
|      | ||||
|     /*  11. Estimate the Vertical field frequency:
 | ||||
|      * | ||||
|      *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000 | ||||
|      */ | ||||
| 
 | ||||
|     v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0; | ||||
|      | ||||
|     /*  12. Find the actual horizontal period:
 | ||||
|      * | ||||
|      *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST]) | ||||
|      */ | ||||
| 
 | ||||
|     h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est); | ||||
|      | ||||
|     /*  13. Find the actual Vertical field frequency:
 | ||||
|      * | ||||
|      *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000 | ||||
|      */ | ||||
| 
 | ||||
|     v_field_rate = 1.0 / h_period / total_v_lines * 1000000.0; | ||||
| 
 | ||||
|     /*  14. Find the Vertical frame frequency:
 | ||||
|      * | ||||
|      *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE])) | ||||
|      */ | ||||
| 
 | ||||
|     v_frame_rate = interlaced ? v_field_rate / 2.0 : v_field_rate; | ||||
| 
 | ||||
|     /*  15. Find number of pixels in left margin:
 | ||||
|      * | ||||
|      *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", | ||||
|      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / | ||||
|      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND], | ||||
|      *          0)) | ||||
|      */ | ||||
| 
 | ||||
|     left_margin = margins ? | ||||
|         rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN : | ||||
|         0.0; | ||||
|      | ||||
|     /*  16. Find number of pixels in right margin:
 | ||||
|      * | ||||
|      *  [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y", | ||||
|      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 / | ||||
|      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND], | ||||
|      *          0)) | ||||
|      */ | ||||
|      | ||||
|     right_margin = margins ? | ||||
|         rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN : | ||||
|         0.0; | ||||
|      | ||||
|     /*  17. Find total number of active pixels in image and left and right
 | ||||
|      *  margins: | ||||
|      * | ||||
|      *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] + | ||||
|      *                          [RIGHT MARGIN (PIXELS)] | ||||
|      */ | ||||
| 
 | ||||
|     total_active_pixels = h_pixels_rnd + left_margin + right_margin; | ||||
|      | ||||
|     /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
 | ||||
|      *  equation: | ||||
|      * | ||||
|      *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000) | ||||
|      */ | ||||
| 
 | ||||
|     ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0); | ||||
|      | ||||
|     /*  19. Find the number of pixels in the blanking time to the nearest
 | ||||
|      *  double character cell: | ||||
|      * | ||||
|      *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] * | ||||
|      *                               [IDEAL DUTY CYCLE] / | ||||
|      *                               (100-[IDEAL DUTY CYCLE]) / | ||||
|      *                               (2*[CELL GRAN RND])), 0)) | ||||
|      *                       * (2*[CELL GRAN RND]) | ||||
|      */ | ||||
| 
 | ||||
|     h_blank = rint(total_active_pixels * | ||||
|                    ideal_duty_cycle / | ||||
|                    (100.0 - ideal_duty_cycle) / | ||||
|                    (2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN); | ||||
|      | ||||
|     /*  20. Find total number of pixels:
 | ||||
|      * | ||||
|      *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)] | ||||
|      */ | ||||
| 
 | ||||
|     total_pixels = total_active_pixels + h_blank; | ||||
|      | ||||
|     /*  21. Find pixel clock frequency:
 | ||||
|      * | ||||
|      *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD] | ||||
|      */ | ||||
|      | ||||
|     pixel_freq = total_pixels / h_period; | ||||
|      | ||||
|     /*  22. Find horizontal frequency:
 | ||||
|      * | ||||
|      *  [H FREQ] = 1000 / [H PERIOD] | ||||
|      */ | ||||
| 
 | ||||
|     h_freq = 1000.0 / h_period; | ||||
|      | ||||
| 
 | ||||
|     /* Stage 1 computations are now complete; I should really pass
 | ||||
|        the results to another function and do the Stage 2 | ||||
|        computations, but I only need a few more values so I'll just | ||||
|        append the computations here for now */ | ||||
|      | ||||
| 
 | ||||
|     /*  17. Find the number of pixels in the horizontal sync period:
 | ||||
|      * | ||||
|      *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] / | ||||
|      *                             [CELL GRAN RND]),0))*[CELL GRAN RND] | ||||
|      */ | ||||
| 
 | ||||
|     h_sync = rint(H_SYNC_PERCENT/100.0 * total_pixels / CELL_GRAN) * CELL_GRAN; | ||||
| 
 | ||||
|     /*  18. Find the number of pixels in the horizontal front porch period:
 | ||||
|      * | ||||
|      *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)] | ||||
|      */ | ||||
| 
 | ||||
|     h_front_porch = (h_blank / 2.0) - h_sync; | ||||
| 
 | ||||
|     /*  36. Find the number of lines in the odd front porch period:
 | ||||
|      * | ||||
|      *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE]) | ||||
|      */ | ||||
|      | ||||
|     v_odd_front_porch_lines = MIN_PORCH + interlace; | ||||
|      | ||||
|     /* finally, pack the results in the mode struct */ | ||||
| 
 | ||||
|     mode->HDisplay	= (int) (h_pixels_rnd); | ||||
|     mode->HSyncStart	= (int) (h_pixels_rnd + h_front_porch); | ||||
|     mode->HSyncEnd	= (int) (h_pixels_rnd + h_front_porch + h_sync); | ||||
|     mode->HTotal	= (int) (total_pixels); | ||||
|     mode->VDisplay	= (int) (v_lines_rnd); | ||||
|     mode->VSyncStart	= (int) (v_lines_rnd + v_odd_front_porch_lines); | ||||
|     mode->VSyncEnd	= (int) (v_lines_rnd + v_odd_front_porch_lines + V_SYNC_RQD); | ||||
|     mode->VTotal	= (int) (total_v_lines); | ||||
| 
 | ||||
|     mode->Clock	    = (int) (pixel_freq * 1000.0); | ||||
|     mode->HSync	    = h_freq; | ||||
|     mode->VRefresh  = freq; | ||||
| 
 | ||||
|     xf86SetModeDefaultName(mode); | ||||
| 
 | ||||
|     mode->Flags = V_NHSYNC | V_PVSYNC; | ||||
|     if (interlaced) { | ||||
| 	mode->VTotal *= 2; | ||||
| 	mode->Flags |= V_INTERLACE; | ||||
|     } | ||||
| 
 | ||||
|     return mode; | ||||
| } | ||||
		Loading…
	
		Reference in New Issue