3600 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			3600 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
/***********************************************************
 | 
						|
 | 
						|
Copyright 1987, 1998  The Open Group
 | 
						|
 | 
						|
Permission to use, copy, modify, distribute, and sell this software and its
 | 
						|
documentation for any purpose is hereby granted without fee, provided that
 | 
						|
the above copyright notice appear in all copies and that both that
 | 
						|
copyright notice and this permission notice appear in supporting
 | 
						|
documentation.
 | 
						|
 | 
						|
The above copyright notice and this permission notice shall be included in
 | 
						|
all copies or substantial portions of the Software.
 | 
						|
 | 
						|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 | 
						|
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 | 
						|
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | 
						|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | 
						|
 | 
						|
Except as contained in this notice, the name of The Open Group shall not be
 | 
						|
used in advertising or otherwise to promote the sale, use or other dealings
 | 
						|
in this Software without prior written authorization from The Open Group.
 | 
						|
 | 
						|
Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.
 | 
						|
 | 
						|
                        All Rights Reserved
 | 
						|
 | 
						|
Permission to use, copy, modify, and distribute this software and its
 | 
						|
documentation for any purpose and without fee is hereby granted,
 | 
						|
provided that the above copyright notice appear in all copies and that
 | 
						|
both that copyright notice and this permission notice appear in
 | 
						|
supporting documentation, and that the name of Digital not be
 | 
						|
used in advertising or publicity pertaining to distribution of the
 | 
						|
software without specific, written prior permission.
 | 
						|
 | 
						|
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
 | 
						|
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
 | 
						|
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
 | 
						|
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
 | 
						|
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | 
						|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
 | 
						|
SOFTWARE.
 | 
						|
 | 
						|
******************************************************************/
 | 
						|
/* Author: Keith Packard and Bob Scheifler */
 | 
						|
/* Warning: this code is toxic, do not dally very long here. */
 | 
						|
 | 
						|
#include <dix-config.h>
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <X11/X.h>
 | 
						|
#include <X11/Xprotostr.h>
 | 
						|
#include <X11/Xfuncproto.h>
 | 
						|
 | 
						|
#include "mi/mi_priv.h"
 | 
						|
 | 
						|
#include "misc.h"
 | 
						|
#include "gcstruct.h"
 | 
						|
#include "scrnintstr.h"
 | 
						|
#include "pixmapstr.h"
 | 
						|
#include "windowstr.h"
 | 
						|
#include "mifpoly.h"
 | 
						|
#include "mifillarc.h"
 | 
						|
 | 
						|
#define EPSILON	0.000001
 | 
						|
#define ISEQUAL(a,b) (fabs((a) - (b)) <= EPSILON)
 | 
						|
#define UNEQUAL(a,b) (fabs((a) - (b)) > EPSILON)
 | 
						|
#define PTISEQUAL(a,b) (ISEQUAL(a.x,b.x) && ISEQUAL(a.y,b.y))
 | 
						|
#define SQSECANT 108.856472512142   /* 1/sin^2(11/2) - for 11o miter cutoff */
 | 
						|
 | 
						|
/* Point with sub-pixel positioning. */
 | 
						|
typedef struct _SppPoint {
 | 
						|
    double x, y;
 | 
						|
} SppPointRec, *SppPointPtr;
 | 
						|
 | 
						|
typedef struct _SppArc {
 | 
						|
    double x, y, width, height;
 | 
						|
    double angle1, angle2;
 | 
						|
} SppArcRec, *SppArcPtr;
 | 
						|
 | 
						|
static double miDsin(double a);
 | 
						|
static double miDcos(double a);
 | 
						|
static double miDasin(double v);
 | 
						|
static double miDatan2(double dy, double dx);
 | 
						|
 | 
						|
#ifndef HAVE_CBRT
 | 
						|
static double
 | 
						|
cbrt(double x)
 | 
						|
{
 | 
						|
    if (x > 0.0)
 | 
						|
        return pow(x, 1.0 / 3.0);
 | 
						|
    else
 | 
						|
        return -pow(-x, 1.0 / 3.0);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * some interesting semantic interpretation of the protocol:
 | 
						|
 *
 | 
						|
 * Self intersecting arcs (i.e. those spanning 360 degrees)
 | 
						|
 *  never join with other arcs, and are drawn without caps
 | 
						|
 *  (unless on/off dashed, in which case each dash segment
 | 
						|
 *  is capped, except when the last segment meets the
 | 
						|
 *  first segment, when no caps are drawn)
 | 
						|
 *
 | 
						|
 * double dash arcs are drawn in two parts, first the
 | 
						|
 *  odd dashes (drawn in background) then the even dashes
 | 
						|
 *  (drawn in foreground).  This means that overlapping
 | 
						|
 *  sections of foreground/background are drawn twice,
 | 
						|
 *  first in background then in foreground.  The double-draw
 | 
						|
 *  occurs even when the function uses the destination values
 | 
						|
 *  (e.g. xor mode).  This is the same way the wide-line
 | 
						|
 *  code works and should be "fixed".
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
struct bound {
 | 
						|
    double min, max;
 | 
						|
};
 | 
						|
 | 
						|
struct ibound {
 | 
						|
    int min, max;
 | 
						|
};
 | 
						|
 | 
						|
#define boundedLe(value, bounds)\
 | 
						|
	((bounds).min <= (value) && (value) <= (bounds).max)
 | 
						|
 | 
						|
struct line {
 | 
						|
    double m, b;
 | 
						|
    int valid;
 | 
						|
};
 | 
						|
 | 
						|
#define intersectLine(y,line) (line.m * (y) + line.b)
 | 
						|
 | 
						|
/*
 | 
						|
 * these are all y value bounds
 | 
						|
 */
 | 
						|
 | 
						|
struct arc_bound {
 | 
						|
    struct bound ellipse;
 | 
						|
    struct bound inner;
 | 
						|
    struct bound outer;
 | 
						|
    struct bound right;
 | 
						|
    struct bound left;
 | 
						|
    struct ibound inneri;
 | 
						|
    struct ibound outeri;
 | 
						|
};
 | 
						|
 | 
						|
struct accelerators {
 | 
						|
    double tail_y;
 | 
						|
    double h2;
 | 
						|
    double w2;
 | 
						|
    double h4;
 | 
						|
    double w4;
 | 
						|
    double h2mw2;
 | 
						|
    double h2l;
 | 
						|
    double w2l;
 | 
						|
    double fromIntX;
 | 
						|
    double fromIntY;
 | 
						|
    struct line left, right;
 | 
						|
    int yorgu;
 | 
						|
    int yorgl;
 | 
						|
    int xorg;
 | 
						|
};
 | 
						|
 | 
						|
struct arc_def {
 | 
						|
    double w, h, l;
 | 
						|
    double a0, a1;
 | 
						|
};
 | 
						|
 | 
						|
#define todeg(xAngle)	(((double) (xAngle)) / 64.0)
 | 
						|
 | 
						|
#define RIGHT_END	0
 | 
						|
#define LEFT_END	1
 | 
						|
 | 
						|
typedef struct _miArcJoin {
 | 
						|
    int arcIndex0, arcIndex1;
 | 
						|
    int phase0, phase1;
 | 
						|
    int end0, end1;
 | 
						|
} miArcJoinRec, *miArcJoinPtr;
 | 
						|
 | 
						|
typedef struct _miArcCap {
 | 
						|
    int arcIndex;
 | 
						|
    int end;
 | 
						|
} miArcCapRec, *miArcCapPtr;
 | 
						|
 | 
						|
typedef struct _miArcFace {
 | 
						|
    SppPointRec clock;
 | 
						|
    SppPointRec center;
 | 
						|
    SppPointRec counterClock;
 | 
						|
} miArcFaceRec, *miArcFacePtr;
 | 
						|
 | 
						|
typedef struct _miArcData {
 | 
						|
    xArc arc;
 | 
						|
    int render;                 /* non-zero means render after drawing */
 | 
						|
    int join;                   /* related join */
 | 
						|
    int cap;                    /* related cap */
 | 
						|
    int selfJoin;               /* final dash meets first dash */
 | 
						|
    miArcFaceRec bounds[2];
 | 
						|
    double x0, y0, x1, y1;
 | 
						|
} miArcDataRec, *miArcDataPtr;
 | 
						|
 | 
						|
/*
 | 
						|
 * This is an entire sequence of arcs, computed and categorized according
 | 
						|
 * to operation.  miDashArcs generates either one or two of these.
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct _miPolyArc {
 | 
						|
    int narcs;
 | 
						|
    miArcDataPtr arcs;
 | 
						|
    int ncaps;
 | 
						|
    miArcCapPtr caps;
 | 
						|
    int njoins;
 | 
						|
    miArcJoinPtr joins;
 | 
						|
} miPolyArcRec, *miPolyArcPtr;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    short lx, lw, rx, rw;
 | 
						|
} miArcSpan;
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    miArcSpan *spans;
 | 
						|
    int count1, count2, k;
 | 
						|
    char top, bot, hole;
 | 
						|
} miArcSpanData;
 | 
						|
 | 
						|
static void fillSpans(DrawablePtr pDrawable, GCPtr pGC);
 | 
						|
static void newFinalSpan(int y, int xmin, int xmax);
 | 
						|
static miArcSpanData *drawArc(xArc * tarc, int l, int a0, int a1,
 | 
						|
                              miArcFacePtr right, miArcFacePtr left,
 | 
						|
                              miArcSpanData *spdata);
 | 
						|
static void drawZeroArc(DrawablePtr pDraw, GCPtr pGC, xArc * tarc, int lw,
 | 
						|
                        miArcFacePtr left, miArcFacePtr right);
 | 
						|
static void miArcJoin(DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pLeft,
 | 
						|
                      miArcFacePtr pRight, int xOrgLeft, int yOrgLeft,
 | 
						|
                      double xFtransLeft, double yFtransLeft,
 | 
						|
                      int xOrgRight, int yOrgRight,
 | 
						|
                      double xFtransRight, double yFtransRight);
 | 
						|
static void miArcCap(DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pFace,
 | 
						|
                     int end, int xOrg, int yOrg, double xFtrans,
 | 
						|
                     double yFtrans);
 | 
						|
static void miRoundCap(DrawablePtr pDraw, GCPtr pGC, SppPointRec pCenter,
 | 
						|
                       SppPointRec pEnd, SppPointRec pCorner,
 | 
						|
                       SppPointRec pOtherCorner, int fLineEnd,
 | 
						|
                       int xOrg, int yOrg, double xFtrans, double yFtrans);
 | 
						|
static void miFreeArcs(miPolyArcPtr arcs, GCPtr pGC);
 | 
						|
static miPolyArcPtr miComputeArcs(xArc * parcs, int narcs, GCPtr pGC);
 | 
						|
static int miGetArcPts(SppArcPtr parc, int cpt, SppPointPtr * ppPts);
 | 
						|
 | 
						|
#define CUBED_ROOT_2	1.2599210498948732038115849718451499938964
 | 
						|
#define CUBED_ROOT_4	1.5874010519681993173435330390930175781250
 | 
						|
 | 
						|
/*
 | 
						|
 * draw one segment of the arc using the arc spans generation routines
 | 
						|
 */
 | 
						|
 | 
						|
static miArcSpanData *
 | 
						|
miArcSegment(DrawablePtr pDraw, GCPtr pGC, xArc tarc, miArcFacePtr right,
 | 
						|
             miArcFacePtr left, miArcSpanData *spdata)
 | 
						|
{
 | 
						|
    int l = pGC->lineWidth;
 | 
						|
    int a0, a1, startAngle, endAngle;
 | 
						|
    miArcFacePtr temp;
 | 
						|
 | 
						|
    if (!l)
 | 
						|
        l = 1;
 | 
						|
 | 
						|
    if (tarc.width == 0 || tarc.height == 0) {
 | 
						|
        drawZeroArc(pDraw, pGC, &tarc, l, left, right);
 | 
						|
        return spdata;
 | 
						|
    }
 | 
						|
 | 
						|
    if (pGC->miTranslate) {
 | 
						|
        tarc.x += pDraw->x;
 | 
						|
        tarc.y += pDraw->y;
 | 
						|
    }
 | 
						|
 | 
						|
    a0 = tarc.angle1;
 | 
						|
    a1 = tarc.angle2;
 | 
						|
    if (a1 > FULLCIRCLE)
 | 
						|
        a1 = FULLCIRCLE;
 | 
						|
    else if (a1 < -FULLCIRCLE)
 | 
						|
        a1 = -FULLCIRCLE;
 | 
						|
    if (a1 < 0) {
 | 
						|
        startAngle = a0 + a1;
 | 
						|
        endAngle = a0;
 | 
						|
        temp = right;
 | 
						|
        right = left;
 | 
						|
        left = temp;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        startAngle = a0;
 | 
						|
        endAngle = a0 + a1;
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * bounds check the two angles
 | 
						|
     */
 | 
						|
    if (startAngle < 0)
 | 
						|
        startAngle = FULLCIRCLE - (-startAngle) % FULLCIRCLE;
 | 
						|
    if (startAngle >= FULLCIRCLE)
 | 
						|
        startAngle = startAngle % FULLCIRCLE;
 | 
						|
    if (endAngle < 0)
 | 
						|
        endAngle = FULLCIRCLE - (-endAngle) % FULLCIRCLE;
 | 
						|
    if (endAngle > FULLCIRCLE)
 | 
						|
        endAngle = (endAngle - 1) % FULLCIRCLE + 1;
 | 
						|
    if ((startAngle == endAngle) && a1) {
 | 
						|
        startAngle = 0;
 | 
						|
        endAngle = FULLCIRCLE;
 | 
						|
    }
 | 
						|
 | 
						|
    return drawArc(&tarc, l, startAngle, endAngle, right, left, spdata);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 | 
						|
Three equations combine to describe the boundaries of the arc
 | 
						|
 | 
						|
x^2/w^2 + y^2/h^2 = 1			ellipse itself
 | 
						|
(X-x)^2 + (Y-y)^2 = r^2			circle at (x, y) on the ellipse
 | 
						|
(Y-y) = (X-x)*w^2*y/(h^2*x)		normal at (x, y) on the ellipse
 | 
						|
 | 
						|
These lead to a quartic relating Y and y
 | 
						|
 | 
						|
y^4 - (2Y)y^3 + (Y^2 + (h^4 - w^2*r^2)/(w^2 - h^2))y^2
 | 
						|
    - (2Y*h^4/(w^2 - h^2))y + (Y^2*h^4)/(w^2 - h^2) = 0
 | 
						|
 | 
						|
The reducible cubic obtained from this quartic is
 | 
						|
 | 
						|
z^3 - (3N)z^2 - 2V = 0
 | 
						|
 | 
						|
where
 | 
						|
 | 
						|
N = (Y^2 + (h^4 - w^2*r^2/(w^2 - h^2)))/6
 | 
						|
V = w^2*r^2*Y^2*h^4/(4 *(w^2 - h^2)^2)
 | 
						|
 | 
						|
Let
 | 
						|
 | 
						|
t = z - N
 | 
						|
p = -N^2
 | 
						|
q = -N^3 - V
 | 
						|
 | 
						|
Then we get
 | 
						|
 | 
						|
t^3 + 3pt + 2q = 0
 | 
						|
 | 
						|
The discriminant of this cubic is
 | 
						|
 | 
						|
D = q^2 + p^3
 | 
						|
 | 
						|
When D > 0, a real root is obtained as
 | 
						|
 | 
						|
z = N + cbrt(-q+sqrt(D)) + cbrt(-q-sqrt(D))
 | 
						|
 | 
						|
When D < 0, a real root is obtained as
 | 
						|
 | 
						|
z = N - 2m*cos(acos(-q/m^3)/3)
 | 
						|
 | 
						|
where
 | 
						|
 | 
						|
m = sqrt(|p|) * sign(q)
 | 
						|
 | 
						|
Given a real root Z of the cubic, the roots of the quartic are the roots
 | 
						|
of the two quadratics
 | 
						|
 | 
						|
y^2 + ((b+A)/2)y + (Z + (bZ - d)/A) = 0
 | 
						|
 | 
						|
where
 | 
						|
 | 
						|
A = +/- sqrt(8Z + b^2 - 4c)
 | 
						|
b, c, d are the cubic, quadratic, and linear coefficients of the quartic
 | 
						|
 | 
						|
Some experimentation is then required to determine which solutions
 | 
						|
correspond to the inner and outer boundaries.
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
static void drawQuadrant(struct arc_def *def, struct accelerators *acc,
 | 
						|
                         int a0, int a1, int mask, miArcFacePtr right,
 | 
						|
                         miArcFacePtr left, miArcSpanData * spdata);
 | 
						|
 | 
						|
static void
 | 
						|
miComputeCircleSpans(int lw, xArc * parc, miArcSpanData * spdata)
 | 
						|
{
 | 
						|
    miArcSpan *span;
 | 
						|
    int doinner;
 | 
						|
    int x, y, e;
 | 
						|
    int xk, yk, xm, ym, dx, dy;
 | 
						|
    int slw, inslw;
 | 
						|
    int inx = 0, iny, ine = 0;
 | 
						|
    int inxk = 0, inyk = 0, inxm = 0, inym = 0;
 | 
						|
 | 
						|
    doinner = -lw;
 | 
						|
    slw = parc->width - doinner;
 | 
						|
    y = parc->height >> 1;
 | 
						|
    dy = parc->height & 1;
 | 
						|
    dx = 1 - dy;
 | 
						|
    MIWIDEARCSETUP(x, y, dy, slw, e, xk, xm, yk, ym);
 | 
						|
    inslw = parc->width + doinner;
 | 
						|
    if (inslw > 0) {
 | 
						|
        spdata->hole = spdata->top;
 | 
						|
        MIWIDEARCSETUP(inx, iny, dy, inslw, ine, inxk, inxm, inyk, inym);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        spdata->hole = FALSE;
 | 
						|
        doinner = -y;
 | 
						|
    }
 | 
						|
    spdata->count1 = -doinner - spdata->top;
 | 
						|
    spdata->count2 = y + doinner;
 | 
						|
    span = spdata->spans;
 | 
						|
    while (y) {
 | 
						|
        MIFILLARCSTEP(slw);
 | 
						|
        span->lx = dy - x;
 | 
						|
        if (++doinner <= 0) {
 | 
						|
            span->lw = slw;
 | 
						|
            span->rx = 0;
 | 
						|
            span->rw = span->lx + slw;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            MIFILLINARCSTEP(inslw);
 | 
						|
            span->lw = x - inx;
 | 
						|
            span->rx = dy - inx + inslw;
 | 
						|
            span->rw = inx - x + slw - inslw;
 | 
						|
        }
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    if (spdata->bot) {
 | 
						|
        if (spdata->count2)
 | 
						|
            spdata->count2--;
 | 
						|
        else {
 | 
						|
            if (lw > (int) parc->height)
 | 
						|
                span[-1].rx = span[-1].rw = -((lw - (int) parc->height) >> 1);
 | 
						|
            else
 | 
						|
                span[-1].rw = 0;
 | 
						|
            spdata->count1--;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
miComputeEllipseSpans(int lw, xArc * parc, miArcSpanData * spdata)
 | 
						|
{
 | 
						|
    miArcSpan *span;
 | 
						|
    double w, h, r, xorg;
 | 
						|
    double Hs, Hf, WH, K, Vk, Nk, Fk, Vr, N, Nc, Z, rs;
 | 
						|
    double A, T, b, d, x, y, t, inx, outx = 0.0, hepp, hepm;
 | 
						|
    int flip, solution;
 | 
						|
 | 
						|
    w = (double) parc->width / 2.0;
 | 
						|
    h = (double) parc->height / 2.0;
 | 
						|
    r = lw / 2.0;
 | 
						|
    rs = r * r;
 | 
						|
    Hs = h * h;
 | 
						|
    WH = w * w - Hs;
 | 
						|
    Nk = w * r;
 | 
						|
    Vk = (Nk * Hs) / (WH + WH);
 | 
						|
    Hf = Hs * Hs;
 | 
						|
    Nk = (Hf - Nk * Nk) / WH;
 | 
						|
    Fk = Hf / WH;
 | 
						|
    hepp = h + EPSILON;
 | 
						|
    hepm = h - EPSILON;
 | 
						|
    K = h + ((lw - 1) >> 1);
 | 
						|
    span = spdata->spans;
 | 
						|
    if (parc->width & 1)
 | 
						|
        xorg = .5;
 | 
						|
    else
 | 
						|
        xorg = 0.0;
 | 
						|
    if (spdata->top) {
 | 
						|
        span->lx = 0;
 | 
						|
        span->lw = 1;
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    spdata->count1 = 0;
 | 
						|
    spdata->count2 = 0;
 | 
						|
    spdata->hole = (spdata->top &&
 | 
						|
                    (int) parc->height * lw <= (int) (parc->width * parc->width)
 | 
						|
                    && lw < (int) parc->height);
 | 
						|
    for (; K > 0.0; K -= 1.0) {
 | 
						|
        N = (K * K + Nk) / 6.0;
 | 
						|
        Nc = N * N * N;
 | 
						|
        Vr = Vk * K;
 | 
						|
        t = Nc + Vr * Vr;
 | 
						|
        d = Nc + t;
 | 
						|
        if (d < 0.0) {
 | 
						|
            d = Nc;
 | 
						|
            b = N;
 | 
						|
            if ((b < 0.0) == (t < 0.0)) {
 | 
						|
                b = -b;
 | 
						|
                d = -d;
 | 
						|
            }
 | 
						|
            Z = N - 2.0 * b * cos(acos(-t / d) / 3.0);
 | 
						|
            if ((Z < 0.0) == (Vr < 0.0))
 | 
						|
                flip = 2;
 | 
						|
            else
 | 
						|
                flip = 1;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            d = Vr * sqrt(d);
 | 
						|
            Z = N + cbrt(t + d) + cbrt(t - d);
 | 
						|
            flip = 0;
 | 
						|
        }
 | 
						|
        A = sqrt((Z + Z) - Nk);
 | 
						|
        T = (Fk - Z) * K / A;
 | 
						|
        inx = 0.0;
 | 
						|
        solution = FALSE;
 | 
						|
        b = -A + K;
 | 
						|
        d = b * b - 4 * (Z + T);
 | 
						|
        if (d >= 0) {
 | 
						|
            d = sqrt(d);
 | 
						|
            y = (b + d) / 2;
 | 
						|
            if ((y >= 0.0) && (y < hepp)) {
 | 
						|
                solution = TRUE;
 | 
						|
                if (y > hepm)
 | 
						|
                    y = h;
 | 
						|
                t = y / h;
 | 
						|
                x = w * sqrt(1 - (t * t));
 | 
						|
                t = K - y;
 | 
						|
                if (rs - (t * t) >= 0)
 | 
						|
                    t = sqrt(rs - (t * t));
 | 
						|
                else
 | 
						|
                    t = 0;
 | 
						|
                if (flip == 2)
 | 
						|
                    inx = x - t;
 | 
						|
                else
 | 
						|
                    outx = x + t;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        b = A + K;
 | 
						|
        d = b * b - 4 * (Z - T);
 | 
						|
        /* Because of the large magnitudes involved, we lose enough precision
 | 
						|
         * that sometimes we end up with a negative value near the axis, when
 | 
						|
         * it should be positive.  This is a workaround.
 | 
						|
         */
 | 
						|
        if (d < 0 && !solution)
 | 
						|
            d = 0.0;
 | 
						|
        if (d >= 0) {
 | 
						|
            d = sqrt(d);
 | 
						|
            y = (b + d) / 2;
 | 
						|
            if (y < hepp) {
 | 
						|
                if (y > hepm)
 | 
						|
                    y = h;
 | 
						|
                t = y / h;
 | 
						|
                x = w * sqrt(1 - (t * t));
 | 
						|
                t = K - y;
 | 
						|
                if (rs - (t * t) >= 0)
 | 
						|
                    inx = x - sqrt(rs - (t * t));
 | 
						|
                else
 | 
						|
                    inx = x;
 | 
						|
            }
 | 
						|
            y = (b - d) / 2;
 | 
						|
            if (y >= 0.0) {
 | 
						|
                if (y > hepm)
 | 
						|
                    y = h;
 | 
						|
                t = y / h;
 | 
						|
                x = w * sqrt(1 - (t * t));
 | 
						|
                t = K - y;
 | 
						|
                if (rs - (t * t) >= 0)
 | 
						|
                    t = sqrt(rs - (t * t));
 | 
						|
                else
 | 
						|
                    t = 0;
 | 
						|
                if (flip == 1)
 | 
						|
                    inx = x - t;
 | 
						|
                else
 | 
						|
                    outx = x + t;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        span->lx = ICEIL(xorg - outx);
 | 
						|
        if (inx <= 0.0) {
 | 
						|
            spdata->count1++;
 | 
						|
            span->lw = ICEIL(xorg + outx) - span->lx;
 | 
						|
            span->rx = ICEIL(xorg + inx);
 | 
						|
            span->rw = -ICEIL(xorg - inx);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            spdata->count2++;
 | 
						|
            span->lw = ICEIL(xorg - inx) - span->lx;
 | 
						|
            span->rx = ICEIL(xorg + inx);
 | 
						|
            span->rw = ICEIL(xorg + outx) - span->rx;
 | 
						|
        }
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    if (spdata->bot) {
 | 
						|
        outx = w + r;
 | 
						|
        if (r >= h && r <= w)
 | 
						|
            inx = 0.0;
 | 
						|
        else if (Nk < 0.0 && -Nk < Hs) {
 | 
						|
            inx = w * sqrt(1 + Nk / Hs) - sqrt(rs + Nk);
 | 
						|
            if (inx > w - r)
 | 
						|
                inx = w - r;
 | 
						|
        }
 | 
						|
        else
 | 
						|
            inx = w - r;
 | 
						|
        span->lx = ICEIL(xorg - outx);
 | 
						|
        if (inx <= 0.0) {
 | 
						|
            span->lw = ICEIL(xorg + outx) - span->lx;
 | 
						|
            span->rx = ICEIL(xorg + inx);
 | 
						|
            span->rw = -ICEIL(xorg - inx);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            span->lw = ICEIL(xorg - inx) - span->lx;
 | 
						|
            span->rx = ICEIL(xorg + inx);
 | 
						|
            span->rw = ICEIL(xorg + outx) - span->rx;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (spdata->hole) {
 | 
						|
        span = &spdata->spans[spdata->count1];
 | 
						|
        span->lw = -span->lx;
 | 
						|
        span->rx = 1;
 | 
						|
        span->rw = span->lw;
 | 
						|
        spdata->count1--;
 | 
						|
        spdata->count2++;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
tailX(double K,
 | 
						|
      struct arc_def *def, struct arc_bound *bounds, struct accelerators *acc)
 | 
						|
{
 | 
						|
    double w, h, r;
 | 
						|
    double Hs, Hf, WH, Vk, Nk, Fk, Vr, N, Nc, Z, rs;
 | 
						|
    double A, T, b, d, x, y, t, hepp, hepm;
 | 
						|
    int flip, solution;
 | 
						|
    double xs[2];
 | 
						|
    double *xp;
 | 
						|
 | 
						|
    w = def->w;
 | 
						|
    h = def->h;
 | 
						|
    r = def->l;
 | 
						|
    rs = r * r;
 | 
						|
    Hs = acc->h2;
 | 
						|
    WH = -acc->h2mw2;
 | 
						|
    Nk = def->w * r;
 | 
						|
    Vk = (Nk * Hs) / (WH + WH);
 | 
						|
    Hf = acc->h4;
 | 
						|
    Nk = (Hf - Nk * Nk) / WH;
 | 
						|
    if (K == 0.0) {
 | 
						|
        if (Nk < 0.0 && -Nk < Hs) {
 | 
						|
            xs[0] = w * sqrt(1 + Nk / Hs) - sqrt(rs + Nk);
 | 
						|
            xs[1] = w - r;
 | 
						|
            if (acc->left.valid && boundedLe(K, bounds->left) &&
 | 
						|
                !boundedLe(K, bounds->outer) && xs[0] >= 0.0 && xs[1] >= 0.0)
 | 
						|
                return xs[1];
 | 
						|
            if (acc->right.valid && boundedLe(K, bounds->right) &&
 | 
						|
                !boundedLe(K, bounds->inner) && xs[0] <= 0.0 && xs[1] <= 0.0)
 | 
						|
                return xs[1];
 | 
						|
            return xs[0];
 | 
						|
        }
 | 
						|
        return w - r;
 | 
						|
    }
 | 
						|
    Fk = Hf / WH;
 | 
						|
    hepp = h + EPSILON;
 | 
						|
    hepm = h - EPSILON;
 | 
						|
    N = (K * K + Nk) / 6.0;
 | 
						|
    Nc = N * N * N;
 | 
						|
    Vr = Vk * K;
 | 
						|
    xp = xs;
 | 
						|
    xs[0] = 0.0;
 | 
						|
    t = Nc + Vr * Vr;
 | 
						|
    d = Nc + t;
 | 
						|
    if (d < 0.0) {
 | 
						|
        d = Nc;
 | 
						|
        b = N;
 | 
						|
        if ((b < 0.0) == (t < 0.0)) {
 | 
						|
            b = -b;
 | 
						|
            d = -d;
 | 
						|
        }
 | 
						|
        Z = N - 2.0 * b * cos(acos(-t / d) / 3.0);
 | 
						|
        if ((Z < 0.0) == (Vr < 0.0))
 | 
						|
            flip = 2;
 | 
						|
        else
 | 
						|
            flip = 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        d = Vr * sqrt(d);
 | 
						|
        Z = N + cbrt(t + d) + cbrt(t - d);
 | 
						|
        flip = 0;
 | 
						|
    }
 | 
						|
    A = sqrt((Z + Z) - Nk);
 | 
						|
    T = (Fk - Z) * K / A;
 | 
						|
    solution = FALSE;
 | 
						|
    b = -A + K;
 | 
						|
    d = b * b - 4 * (Z + T);
 | 
						|
    if (d >= 0 && flip == 2) {
 | 
						|
        d = sqrt(d);
 | 
						|
        y = (b + d) / 2;
 | 
						|
        if ((y >= 0.0) && (y < hepp)) {
 | 
						|
            solution = TRUE;
 | 
						|
            if (y > hepm)
 | 
						|
                y = h;
 | 
						|
            t = y / h;
 | 
						|
            x = w * sqrt(1 - (t * t));
 | 
						|
            t = K - y;
 | 
						|
            if (rs - (t * t) >= 0)
 | 
						|
                t = sqrt(rs - (t * t));
 | 
						|
            else
 | 
						|
                t = 0;
 | 
						|
            *xp++ = x - t;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    b = A + K;
 | 
						|
    d = b * b - 4 * (Z - T);
 | 
						|
    /* Because of the large magnitudes involved, we lose enough precision
 | 
						|
     * that sometimes we end up with a negative value near the axis, when
 | 
						|
     * it should be positive.  This is a workaround.
 | 
						|
     */
 | 
						|
    if (d < 0 && !solution)
 | 
						|
        d = 0.0;
 | 
						|
    if (d >= 0) {
 | 
						|
        d = sqrt(d);
 | 
						|
        y = (b + d) / 2;
 | 
						|
        if (y < hepp) {
 | 
						|
            if (y > hepm)
 | 
						|
                y = h;
 | 
						|
            t = y / h;
 | 
						|
            x = w * sqrt(1 - (t * t));
 | 
						|
            t = K - y;
 | 
						|
            if (rs - (t * t) >= 0)
 | 
						|
                *xp++ = x - sqrt(rs - (t * t));
 | 
						|
            else
 | 
						|
                *xp++ = x;
 | 
						|
        }
 | 
						|
        y = (b - d) / 2;
 | 
						|
        if (y >= 0.0 && flip == 1) {
 | 
						|
            if (y > hepm)
 | 
						|
                y = h;
 | 
						|
            t = y / h;
 | 
						|
            x = w * sqrt(1 - (t * t));
 | 
						|
            t = K - y;
 | 
						|
            if (rs - (t * t) >= 0)
 | 
						|
                t = sqrt(rs - (t * t));
 | 
						|
            else
 | 
						|
                t = 0;
 | 
						|
            *xp++ = x - t;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (xp > &xs[1]) {
 | 
						|
        if (acc->left.valid && boundedLe(K, bounds->left) &&
 | 
						|
            !boundedLe(K, bounds->outer) && xs[0] >= 0.0 && xs[1] >= 0.0)
 | 
						|
            return xs[1];
 | 
						|
        if (acc->right.valid && boundedLe(K, bounds->right) &&
 | 
						|
            !boundedLe(K, bounds->inner) && xs[0] <= 0.0 && xs[1] <= 0.0)
 | 
						|
            return xs[1];
 | 
						|
    }
 | 
						|
    return xs[0];
 | 
						|
}
 | 
						|
 | 
						|
static miArcSpanData *
 | 
						|
miComputeWideEllipse(int lw, xArc * parc)
 | 
						|
{
 | 
						|
    int k;
 | 
						|
 | 
						|
    if (!lw)
 | 
						|
        lw = 1;
 | 
						|
    k = (parc->height >> 1) + ((lw - 1) >> 1);
 | 
						|
    miArcSpanData *spdata = calloc(1, sizeof(miArcSpanData) + sizeof(miArcSpan) * (k + 2));
 | 
						|
    if (!spdata)
 | 
						|
        return NULL;
 | 
						|
    spdata->spans = (miArcSpan *) (spdata + 1);
 | 
						|
    spdata->k = k;
 | 
						|
    spdata->top = !(lw & 1) && !(parc->width & 1);
 | 
						|
    spdata->bot = !(parc->height & 1);
 | 
						|
    if (parc->width == parc->height)
 | 
						|
        miComputeCircleSpans(lw, parc, spdata);
 | 
						|
    else
 | 
						|
        miComputeEllipseSpans(lw, parc, spdata);
 | 
						|
    return spdata;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
miFillWideEllipse(DrawablePtr pDraw, GCPtr pGC, xArc * parc)
 | 
						|
{
 | 
						|
    DDXPointPtr points;
 | 
						|
    DDXPointPtr pts;
 | 
						|
    int *wids;
 | 
						|
    miArcSpanData *spdata;
 | 
						|
    miArcSpan *span;
 | 
						|
    int xorg, yorgu, yorgl;
 | 
						|
    int n;
 | 
						|
 | 
						|
    yorgu = parc->height + pGC->lineWidth;
 | 
						|
    n = (sizeof(int) * 2) * yorgu;
 | 
						|
    int *widths = calloc(1, n + (sizeof(DDXPointRec) * 2) * yorgu);
 | 
						|
    if (!widths)
 | 
						|
        return;
 | 
						|
    points = (DDXPointPtr) ((char *) widths + n);
 | 
						|
    spdata = miComputeWideEllipse((int) pGC->lineWidth, parc);
 | 
						|
    if (!spdata) {
 | 
						|
        free(widths);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    pts = points;
 | 
						|
    wids = widths;
 | 
						|
    span = spdata->spans;
 | 
						|
    xorg = parc->x + (parc->width >> 1);
 | 
						|
    yorgu = parc->y + (parc->height >> 1);
 | 
						|
    yorgl = yorgu + (parc->height & 1);
 | 
						|
    if (pGC->miTranslate) {
 | 
						|
        xorg += pDraw->x;
 | 
						|
        yorgu += pDraw->y;
 | 
						|
        yorgl += pDraw->y;
 | 
						|
    }
 | 
						|
    yorgu -= spdata->k;
 | 
						|
    yorgl += spdata->k;
 | 
						|
    if (spdata->top) {
 | 
						|
        pts->x = xorg;
 | 
						|
        pts->y = yorgu - 1;
 | 
						|
        pts++;
 | 
						|
        *wids++ = 1;
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    for (n = spdata->count1; --n >= 0;) {
 | 
						|
        pts[0].x = xorg + span->lx;
 | 
						|
        pts[0].y = yorgu;
 | 
						|
        wids[0] = span->lw;
 | 
						|
        pts[1].x = pts[0].x;
 | 
						|
        pts[1].y = yorgl;
 | 
						|
        wids[1] = wids[0];
 | 
						|
        yorgu++;
 | 
						|
        yorgl--;
 | 
						|
        pts += 2;
 | 
						|
        wids += 2;
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    if (spdata->hole) {
 | 
						|
        pts[0].x = xorg;
 | 
						|
        pts[0].y = yorgl;
 | 
						|
        wids[0] = 1;
 | 
						|
        pts++;
 | 
						|
        wids++;
 | 
						|
    }
 | 
						|
    for (n = spdata->count2; --n >= 0;) {
 | 
						|
        pts[0].x = xorg + span->lx;
 | 
						|
        pts[0].y = yorgu;
 | 
						|
        wids[0] = span->lw;
 | 
						|
        pts[1].x = xorg + span->rx;
 | 
						|
        pts[1].y = pts[0].y;
 | 
						|
        wids[1] = span->rw;
 | 
						|
        pts[2].x = pts[0].x;
 | 
						|
        pts[2].y = yorgl;
 | 
						|
        wids[2] = wids[0];
 | 
						|
        pts[3].x = pts[1].x;
 | 
						|
        pts[3].y = pts[2].y;
 | 
						|
        wids[3] = wids[1];
 | 
						|
        yorgu++;
 | 
						|
        yorgl--;
 | 
						|
        pts += 4;
 | 
						|
        wids += 4;
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    if (spdata->bot) {
 | 
						|
        if (span->rw <= 0) {
 | 
						|
            pts[0].x = xorg + span->lx;
 | 
						|
            pts[0].y = yorgu;
 | 
						|
            wids[0] = span->lw;
 | 
						|
            pts++;
 | 
						|
            wids++;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            pts[0].x = xorg + span->lx;
 | 
						|
            pts[0].y = yorgu;
 | 
						|
            wids[0] = span->lw;
 | 
						|
            pts[1].x = xorg + span->rx;
 | 
						|
            pts[1].y = pts[0].y;
 | 
						|
            wids[1] = span->rw;
 | 
						|
            pts += 2;
 | 
						|
            wids += 2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    free(spdata);
 | 
						|
    (*pGC->ops->FillSpans) (pDraw, pGC, pts - points, points, widths, FALSE);
 | 
						|
 | 
						|
    free(widths);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * miPolyArc strategy:
 | 
						|
 *
 | 
						|
 * If arc is zero width and solid, we don't have to worry about the rasterop
 | 
						|
 * or join styles.  For wide solid circles, we use a fast integer algorithm.
 | 
						|
 * For wide solid ellipses, we use special case floating point code.
 | 
						|
 * Otherwise, we set up pDrawTo and pGCTo according to the rasterop, then
 | 
						|
 * draw using pGCTo and pDrawTo.  If the raster-op was "tricky," that is,
 | 
						|
 * if it involves the destination, then we use PushPixels to move the bits
 | 
						|
 * from the scratch drawable to pDraw. (See the wide line code for a
 | 
						|
 * fuller explanation of this.)
 | 
						|
 */
 | 
						|
 | 
						|
void
 | 
						|
miWideArc(DrawablePtr pDraw, GCPtr pGC, int narcs, xArc * parcs)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    xArc *parc;
 | 
						|
    int xMin, xMax, yMin, yMax;
 | 
						|
    int pixmapWidth = 0, pixmapHeight = 0;
 | 
						|
    int xOrg = 0, yOrg = 0;
 | 
						|
    int width = pGC->lineWidth;
 | 
						|
    Bool fTricky;
 | 
						|
    DrawablePtr pDrawTo;
 | 
						|
    CARD32 fg, bg;
 | 
						|
    GCPtr pGCTo;
 | 
						|
    miPolyArcPtr polyArcs;
 | 
						|
    int cap[2], join[2];
 | 
						|
    int iphase;
 | 
						|
    int halfWidth;
 | 
						|
 | 
						|
    if (width == 0 && pGC->lineStyle == LineSolid) {
 | 
						|
        for (i = narcs, parc = parcs; --i >= 0; parc++) {
 | 
						|
            miArcSpanData *spdata;
 | 
						|
            spdata = miArcSegment(pDraw, pGC, *parc, NULL, NULL, NULL);
 | 
						|
            free(spdata);
 | 
						|
        }
 | 
						|
        fillSpans(pDraw, pGC);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if ((pGC->lineStyle == LineSolid) && narcs) {
 | 
						|
        while (parcs->width && parcs->height &&
 | 
						|
               (parcs->angle2 >= FULLCIRCLE || parcs->angle2 <= -FULLCIRCLE)) {
 | 
						|
            miFillWideEllipse(pDraw, pGC, parcs);
 | 
						|
            if (!--narcs)
 | 
						|
                return;
 | 
						|
            parcs++;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Set up pDrawTo and pGCTo based on the rasterop */
 | 
						|
    switch (pGC->alu) {
 | 
						|
    case GXclear:          /* 0 */
 | 
						|
    case GXcopy:           /* src */
 | 
						|
    case GXcopyInverted:   /* NOT src */
 | 
						|
    case GXset:            /* 1 */
 | 
						|
        fTricky = FALSE;
 | 
						|
        pDrawTo = pDraw;
 | 
						|
        pGCTo = pGC;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        fTricky = TRUE;
 | 
						|
 | 
						|
        /* find bounding box around arcs */
 | 
						|
        xMin = yMin = MAXSHORT;
 | 
						|
        xMax = yMax = MINSHORT;
 | 
						|
 | 
						|
        for (i = narcs, parc = parcs; --i >= 0; parc++) {
 | 
						|
            xMin = min(xMin, parc->x);
 | 
						|
            yMin = min(yMin, parc->y);
 | 
						|
            xMax = max(xMax, (parc->x + (int) parc->width));
 | 
						|
            yMax = max(yMax, (parc->y + (int) parc->height));
 | 
						|
        }
 | 
						|
 | 
						|
        /* expand box to deal with line widths */
 | 
						|
        halfWidth = (width + 1) / 2;
 | 
						|
        xMin -= halfWidth;
 | 
						|
        yMin -= halfWidth;
 | 
						|
        xMax += halfWidth;
 | 
						|
        yMax += halfWidth;
 | 
						|
 | 
						|
        /* compute pixmap size; limit it to size of drawable */
 | 
						|
        xOrg = max(xMin, 0);
 | 
						|
        yOrg = max(yMin, 0);
 | 
						|
        pixmapWidth = min(xMax, pDraw->width) - xOrg;
 | 
						|
        pixmapHeight = min(yMax, pDraw->height) - yOrg;
 | 
						|
 | 
						|
        /* if nothing left, return */
 | 
						|
        if ((pixmapWidth <= 0) || (pixmapHeight <= 0))
 | 
						|
            return;
 | 
						|
 | 
						|
        for (i = narcs, parc = parcs; --i >= 0; parc++) {
 | 
						|
            parc->x -= xOrg;
 | 
						|
            parc->y -= yOrg;
 | 
						|
        }
 | 
						|
        if (pGC->miTranslate) {
 | 
						|
            xOrg += pDraw->x;
 | 
						|
            yOrg += pDraw->y;
 | 
						|
        }
 | 
						|
 | 
						|
        /* set up scratch GC */
 | 
						|
        pGCTo = GetScratchGC(1, pDraw->pScreen);
 | 
						|
        if (!pGCTo)
 | 
						|
            return;
 | 
						|
        {
 | 
						|
            ChangeGCVal gcvals[6];
 | 
						|
 | 
						|
            gcvals[0].val = GXcopy;
 | 
						|
            gcvals[1].val = 1;
 | 
						|
            gcvals[2].val = 0;
 | 
						|
            gcvals[3].val = pGC->lineWidth;
 | 
						|
            gcvals[4].val = pGC->capStyle;
 | 
						|
            gcvals[5].val = pGC->joinStyle;
 | 
						|
            ChangeGC(NullClient, pGCTo, GCFunction |
 | 
						|
                     GCForeground | GCBackground | GCLineWidth |
 | 
						|
                     GCCapStyle | GCJoinStyle, gcvals);
 | 
						|
        }
 | 
						|
 | 
						|
        /* allocate a bitmap of the appropriate size, and validate it */
 | 
						|
        pDrawTo = (DrawablePtr) (*pDraw->pScreen->CreatePixmap)
 | 
						|
            (pDraw->pScreen, pixmapWidth, pixmapHeight, 1,
 | 
						|
             CREATE_PIXMAP_USAGE_SCRATCH);
 | 
						|
        if (!pDrawTo) {
 | 
						|
            FreeScratchGC(pGCTo);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        ValidateGC(pDrawTo, pGCTo);
 | 
						|
        miClearDrawable(pDrawTo, pGCTo);
 | 
						|
    }
 | 
						|
 | 
						|
    fg = pGC->fgPixel;
 | 
						|
    bg = pGC->bgPixel;
 | 
						|
 | 
						|
    /* the protocol sez these don't cause color changes */
 | 
						|
    if ((pGC->fillStyle == FillTiled) ||
 | 
						|
        (pGC->fillStyle == FillOpaqueStippled))
 | 
						|
        bg = fg;
 | 
						|
 | 
						|
    polyArcs = miComputeArcs(parcs, narcs, pGC);
 | 
						|
    if (!polyArcs)
 | 
						|
        goto out;
 | 
						|
 | 
						|
    cap[0] = cap[1] = 0;
 | 
						|
    join[0] = join[1] = 0;
 | 
						|
    for (iphase = (pGC->lineStyle == LineDoubleDash); iphase >= 0; iphase--) {
 | 
						|
        miArcSpanData *spdata = NULL;
 | 
						|
        xArc lastArc;
 | 
						|
        ChangeGCVal gcval;
 | 
						|
 | 
						|
        if (iphase == 1) {
 | 
						|
            gcval.val = bg;
 | 
						|
            ChangeGC(NullClient, pGC, GCForeground, &gcval);
 | 
						|
            ValidateGC(pDraw, pGC);
 | 
						|
        }
 | 
						|
        else if (pGC->lineStyle == LineDoubleDash) {
 | 
						|
            gcval.val = fg;
 | 
						|
            ChangeGC(NullClient, pGC, GCForeground, &gcval);
 | 
						|
            ValidateGC(pDraw, pGC);
 | 
						|
        }
 | 
						|
        for (i = 0; i < polyArcs[iphase].narcs; i++) {
 | 
						|
            miArcDataPtr arcData;
 | 
						|
 | 
						|
            arcData = &polyArcs[iphase].arcs[i];
 | 
						|
            if (spdata) {
 | 
						|
                if (lastArc.width != arcData->arc.width ||
 | 
						|
                    lastArc.height != arcData->arc.height) {
 | 
						|
                    free(spdata);
 | 
						|
                    spdata = NULL;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            memcpy(&lastArc, &arcData->arc, sizeof(xArc));
 | 
						|
            spdata = miArcSegment(pDrawTo, pGCTo, arcData->arc,
 | 
						|
                                  &arcData->bounds[RIGHT_END],
 | 
						|
                                  &arcData->bounds[LEFT_END], spdata);
 | 
						|
            if (polyArcs[iphase].arcs[i].render) {
 | 
						|
                fillSpans(pDrawTo, pGCTo);
 | 
						|
                /* don't cap self-joining arcs */
 | 
						|
                if (polyArcs[iphase].arcs[i].selfJoin &&
 | 
						|
                    cap[iphase] < polyArcs[iphase].arcs[i].cap)
 | 
						|
                    cap[iphase]++;
 | 
						|
                while (cap[iphase] < polyArcs[iphase].arcs[i].cap) {
 | 
						|
                    int arcIndex, end;
 | 
						|
                    miArcDataPtr arcData0;
 | 
						|
 | 
						|
                    arcIndex = polyArcs[iphase].caps[cap[iphase]].arcIndex;
 | 
						|
                    end = polyArcs[iphase].caps[cap[iphase]].end;
 | 
						|
                    arcData0 = &polyArcs[iphase].arcs[arcIndex];
 | 
						|
                    miArcCap(pDrawTo, pGCTo,
 | 
						|
                             &arcData0->bounds[end], end,
 | 
						|
                             arcData0->arc.x, arcData0->arc.y,
 | 
						|
                             (double) arcData0->arc.width / 2.0,
 | 
						|
                             (double) arcData0->arc.height / 2.0);
 | 
						|
                    ++cap[iphase];
 | 
						|
                }
 | 
						|
                while (join[iphase] < polyArcs[iphase].arcs[i].join) {
 | 
						|
                    int arcIndex0, arcIndex1, end0, end1;
 | 
						|
                    int phase0, phase1;
 | 
						|
                    miArcDataPtr arcData0, arcData1;
 | 
						|
                    miArcJoinPtr joinp;
 | 
						|
 | 
						|
                    joinp = &polyArcs[iphase].joins[join[iphase]];
 | 
						|
                    arcIndex0 = joinp->arcIndex0;
 | 
						|
                    end0 = joinp->end0;
 | 
						|
                    arcIndex1 = joinp->arcIndex1;
 | 
						|
                    end1 = joinp->end1;
 | 
						|
                    phase0 = joinp->phase0;
 | 
						|
                    phase1 = joinp->phase1;
 | 
						|
                    arcData0 = &polyArcs[phase0].arcs[arcIndex0];
 | 
						|
                    arcData1 = &polyArcs[phase1].arcs[arcIndex1];
 | 
						|
                    miArcJoin(pDrawTo, pGCTo,
 | 
						|
                              &arcData0->bounds[end0],
 | 
						|
                              &arcData1->bounds[end1],
 | 
						|
                              arcData0->arc.x, arcData0->arc.y,
 | 
						|
                              (double) arcData0->arc.width / 2.0,
 | 
						|
                              (double) arcData0->arc.height / 2.0,
 | 
						|
                              arcData1->arc.x, arcData1->arc.y,
 | 
						|
                              (double) arcData1->arc.width / 2.0,
 | 
						|
                              (double) arcData1->arc.height / 2.0);
 | 
						|
                    ++join[iphase];
 | 
						|
                }
 | 
						|
                if (fTricky) {
 | 
						|
                    if (pGC->serialNumber != pDraw->serialNumber)
 | 
						|
                        ValidateGC(pDraw, pGC);
 | 
						|
                    (*pGC->ops->PushPixels) (pGC, (PixmapPtr) pDrawTo,
 | 
						|
                                             pDraw, pixmapWidth,
 | 
						|
                                             pixmapHeight, xOrg, yOrg);
 | 
						|
                    miClearDrawable((DrawablePtr) pDrawTo, pGCTo);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        free(spdata);
 | 
						|
        spdata = NULL;
 | 
						|
    }
 | 
						|
    miFreeArcs(polyArcs, pGC);
 | 
						|
 | 
						|
out:
 | 
						|
    if (fTricky) {
 | 
						|
        dixDestroyPixmap((PixmapPtr) pDrawTo, 0);
 | 
						|
        FreeScratchGC(pGCTo);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Find the index of the point with the smallest y.also return the
 | 
						|
 * smallest and largest y */
 | 
						|
static int
 | 
						|
GetFPolyYBounds(SppPointPtr pts, int n, double yFtrans, int *by, int *ty)
 | 
						|
{
 | 
						|
    SppPointPtr ptMin;
 | 
						|
    double ymin, ymax;
 | 
						|
    SppPointPtr ptsStart = pts;
 | 
						|
 | 
						|
    ptMin = pts;
 | 
						|
    ymin = ymax = (pts++)->y;
 | 
						|
 | 
						|
    while (--n > 0) {
 | 
						|
        if (pts->y < ymin) {
 | 
						|
            ptMin = pts;
 | 
						|
            ymin = pts->y;
 | 
						|
        }
 | 
						|
        if (pts->y > ymax)
 | 
						|
            ymax = pts->y;
 | 
						|
 | 
						|
        pts++;
 | 
						|
    }
 | 
						|
 | 
						|
    *by = ICEIL(ymin + yFtrans);
 | 
						|
    *ty = ICEIL(ymax + yFtrans - 1);
 | 
						|
    return ptMin - ptsStart;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *	miFillSppPoly written by Todd Newman; April. 1987.
 | 
						|
 *
 | 
						|
 *	Fill a convex polygon.  If the given polygon
 | 
						|
 *	is not convex, then the result is undefined.
 | 
						|
 *	The algorithm is to order the edges from smallest
 | 
						|
 *	y to largest by partitioning the array into a left
 | 
						|
 *	edge list and a right edge list.  The algorithm used
 | 
						|
 *	to traverse each edge is digital differencing analyzer
 | 
						|
 *	line algorithm with y as the major axis. There's some funny linear
 | 
						|
 *	interpolation involved because of the subpixel postioning.
 | 
						|
 */
 | 
						|
static void
 | 
						|
miFillSppPoly(DrawablePtr dst, GCPtr pgc, int count,    /* number of points */
 | 
						|
              SppPointPtr ptsIn,        /* the points */
 | 
						|
              int xTrans, int yTrans,   /* Translate each point by this */
 | 
						|
              double xFtrans, double yFtrans    /* translate before conversion
 | 
						|
                                                   by this amount.  This provides
 | 
						|
                                                   a mechanism to match rounding
 | 
						|
                                                   errors with any shape that must
 | 
						|
                                                   meet the polygon exactly.
 | 
						|
                                                 */
 | 
						|
    )
 | 
						|
{
 | 
						|
    double xl = 0.0, xr = 0.0,  /* x vals of left and right edges */
 | 
						|
        ml = 0.0,               /* left edge slope */
 | 
						|
        mr = 0.0,               /* right edge slope */
 | 
						|
        dy,                     /* delta y */
 | 
						|
        i;                      /* loop counter */
 | 
						|
    int y,                      /* current scanline */
 | 
						|
     j, imin,                   /* index of vertex with smallest y */
 | 
						|
     ymin,                      /* y-extents of polygon */
 | 
						|
     ymax, *width, *FirstWidth, /* output buffer */
 | 
						|
    *Marked;                    /* set if this vertex has been used */
 | 
						|
    int left, right,            /* indices to first endpoints */
 | 
						|
     nextleft, nextright;       /* indices to second endpoints */
 | 
						|
    DDXPointPtr ptsOut, FirstPoint;     /* output buffer */
 | 
						|
 | 
						|
    if (pgc->miTranslate) {
 | 
						|
        xTrans += dst->x;
 | 
						|
        yTrans += dst->y;
 | 
						|
    }
 | 
						|
 | 
						|
    imin = GetFPolyYBounds(ptsIn, count, yFtrans, &ymin, &ymax);
 | 
						|
 | 
						|
    y = ymax - ymin + 1;
 | 
						|
    if ((count < 3) || (y <= 0))
 | 
						|
        return;
 | 
						|
    ptsOut = FirstPoint = calloc(y, sizeof(DDXPointRec));
 | 
						|
    width = FirstWidth = calloc(y, sizeof(int));
 | 
						|
    Marked = calloc(count, sizeof(int));
 | 
						|
 | 
						|
    if (!ptsOut || !width || !Marked) {
 | 
						|
        free(Marked);
 | 
						|
        free(width);
 | 
						|
        free(ptsOut);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    for (j = 0; j < count; j++)
 | 
						|
        Marked[j] = 0;
 | 
						|
    nextleft = nextright = imin;
 | 
						|
    Marked[imin] = -1;
 | 
						|
    y = ICEIL(ptsIn[nextleft].y + yFtrans);
 | 
						|
 | 
						|
    /*
 | 
						|
     *  loop through all edges of the polygon
 | 
						|
     */
 | 
						|
    do {
 | 
						|
        /* add a left edge if we need to */
 | 
						|
        if ((y > (ptsIn[nextleft].y + yFtrans) ||
 | 
						|
             ISEQUAL(y, ptsIn[nextleft].y + yFtrans)) &&
 | 
						|
            Marked[nextleft] != 1) {
 | 
						|
            Marked[nextleft]++;
 | 
						|
            left = nextleft++;
 | 
						|
 | 
						|
            /* find the next edge, considering the end conditions */
 | 
						|
            if (nextleft >= count)
 | 
						|
                nextleft = 0;
 | 
						|
 | 
						|
            /* now compute the starting point and slope */
 | 
						|
            dy = ptsIn[nextleft].y - ptsIn[left].y;
 | 
						|
            if (dy != 0.0) {
 | 
						|
                ml = (ptsIn[nextleft].x - ptsIn[left].x) / dy;
 | 
						|
                dy = y - (ptsIn[left].y + yFtrans);
 | 
						|
                xl = (ptsIn[left].x + xFtrans) + ml * max(dy, 0);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* add a right edge if we need to */
 | 
						|
        if ((y > ptsIn[nextright].y + yFtrans) ||
 | 
						|
            (ISEQUAL(y, ptsIn[nextright].y + yFtrans)
 | 
						|
             && Marked[nextright] != 1)) {
 | 
						|
            Marked[nextright]++;
 | 
						|
            right = nextright--;
 | 
						|
 | 
						|
            /* find the next edge, considering the end conditions */
 | 
						|
            if (nextright < 0)
 | 
						|
                nextright = count - 1;
 | 
						|
 | 
						|
            /* now compute the starting point and slope */
 | 
						|
            dy = ptsIn[nextright].y - ptsIn[right].y;
 | 
						|
            if (dy != 0.0) {
 | 
						|
                mr = (ptsIn[nextright].x - ptsIn[right].x) / dy;
 | 
						|
                dy = y - (ptsIn[right].y + yFtrans);
 | 
						|
                xr = (ptsIn[right].x + xFtrans) + mr * max(dy, 0);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         *  generate scans to fill while we still have
 | 
						|
         *  a right edge as well as a left edge.
 | 
						|
         */
 | 
						|
        i = (min(ptsIn[nextleft].y, ptsIn[nextright].y) + yFtrans) - y;
 | 
						|
 | 
						|
        if (i < EPSILON) {
 | 
						|
            if (Marked[nextleft] && Marked[nextright]) {
 | 
						|
                /* Arrgh, we're trapped! (no more points)
 | 
						|
                 * Out, we've got to get out of here before this decadence saps
 | 
						|
                 * our will completely! */
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            j = (int) i;
 | 
						|
            if (!j)
 | 
						|
                j++;
 | 
						|
        }
 | 
						|
        while (j > 0) {
 | 
						|
            int cxl, cxr;
 | 
						|
 | 
						|
            ptsOut->y = (y) + yTrans;
 | 
						|
 | 
						|
            cxl = ICEIL(xl);
 | 
						|
            cxr = ICEIL(xr);
 | 
						|
            /* reverse the edges if necessary */
 | 
						|
            if (xl < xr) {
 | 
						|
                *(width++) = cxr - cxl;
 | 
						|
                (ptsOut++)->x = cxl + xTrans;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                *(width++) = cxl - cxr;
 | 
						|
                (ptsOut++)->x = cxr + xTrans;
 | 
						|
            }
 | 
						|
            y++;
 | 
						|
 | 
						|
            /* increment down the edges */
 | 
						|
            xl += ml;
 | 
						|
            xr += mr;
 | 
						|
            j--;
 | 
						|
        }
 | 
						|
    } while (y <= ymax);
 | 
						|
 | 
						|
    /* Finally, fill the spans we've collected */
 | 
						|
    (*pgc->ops->FillSpans) (dst, pgc,
 | 
						|
                            ptsOut - FirstPoint, FirstPoint, FirstWidth, 1);
 | 
						|
    free(Marked);
 | 
						|
    free(FirstWidth);
 | 
						|
    free(FirstPoint);
 | 
						|
}
 | 
						|
static double
 | 
						|
angleBetween(SppPointRec center, SppPointRec point1, SppPointRec point2)
 | 
						|
{
 | 
						|
    double a1, a2, a;
 | 
						|
 | 
						|
    /*
 | 
						|
     * reflect from X coordinates back to ellipse
 | 
						|
     * coordinates -- y increasing upwards
 | 
						|
     */
 | 
						|
    a1 = miDatan2(-(point1.y - center.y), point1.x - center.x);
 | 
						|
    a2 = miDatan2(-(point2.y - center.y), point2.x - center.x);
 | 
						|
    a = a2 - a1;
 | 
						|
    if (a <= -180.0)
 | 
						|
        a += 360.0;
 | 
						|
    else if (a > 180.0)
 | 
						|
        a -= 360.0;
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
translateBounds(miArcFacePtr b, int x, int y, double fx, double fy)
 | 
						|
{
 | 
						|
    fx += x;
 | 
						|
    fy += y;
 | 
						|
    b->clock.x -= fx;
 | 
						|
    b->clock.y -= fy;
 | 
						|
    b->center.x -= fx;
 | 
						|
    b->center.y -= fy;
 | 
						|
    b->counterClock.x -= fx;
 | 
						|
    b->counterClock.y -= fy;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
miArcJoin(DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pLeft,
 | 
						|
          miArcFacePtr pRight, int xOrgLeft, int yOrgLeft,
 | 
						|
          double xFtransLeft, double yFtransLeft,
 | 
						|
          int xOrgRight, int yOrgRight,
 | 
						|
          double xFtransRight, double yFtransRight)
 | 
						|
{
 | 
						|
    SppPointRec center, corner, otherCorner;
 | 
						|
    SppPointRec poly[5], e;
 | 
						|
    SppPointPtr pArcPts;
 | 
						|
    int cpt;
 | 
						|
    SppArcRec arc;
 | 
						|
    miArcFaceRec Right, Left;
 | 
						|
    int polyLen = 0;
 | 
						|
    int xOrg, yOrg;
 | 
						|
    double xFtrans, yFtrans;
 | 
						|
    double a;
 | 
						|
    double ae, ac2, ec2, bc2, de;
 | 
						|
    double width;
 | 
						|
 | 
						|
    xOrg = (xOrgRight + xOrgLeft) / 2;
 | 
						|
    yOrg = (yOrgRight + yOrgLeft) / 2;
 | 
						|
    xFtrans = (xFtransLeft + xFtransRight) / 2;
 | 
						|
    yFtrans = (yFtransLeft + yFtransRight) / 2;
 | 
						|
    Right = *pRight;
 | 
						|
    translateBounds(&Right, xOrg - xOrgRight, yOrg - yOrgRight,
 | 
						|
                    xFtrans - xFtransRight, yFtrans - yFtransRight);
 | 
						|
    Left = *pLeft;
 | 
						|
    translateBounds(&Left, xOrg - xOrgLeft, yOrg - yOrgLeft,
 | 
						|
                    xFtrans - xFtransLeft, yFtrans - yFtransLeft);
 | 
						|
    pRight = &Right;
 | 
						|
    pLeft = &Left;
 | 
						|
 | 
						|
    if (pRight->clock.x == pLeft->counterClock.x &&
 | 
						|
        pRight->clock.y == pLeft->counterClock.y)
 | 
						|
        return;
 | 
						|
    center = pRight->center;
 | 
						|
    if (0 <= (a = angleBetween(center, pRight->clock, pLeft->counterClock))
 | 
						|
        && a <= 180.0) {
 | 
						|
        corner = pRight->clock;
 | 
						|
        otherCorner = pLeft->counterClock;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        a = angleBetween(center, pLeft->clock, pRight->counterClock);
 | 
						|
        corner = pLeft->clock;
 | 
						|
        otherCorner = pRight->counterClock;
 | 
						|
    }
 | 
						|
    switch (pGC->joinStyle) {
 | 
						|
    case JoinRound:
 | 
						|
        width = (pGC->lineWidth ? (double) pGC->lineWidth : (double) 1);
 | 
						|
 | 
						|
        arc.x = center.x - width / 2;
 | 
						|
        arc.y = center.y - width / 2;
 | 
						|
        arc.width = width;
 | 
						|
        arc.height = width;
 | 
						|
        arc.angle1 = -miDatan2(corner.y - center.y, corner.x - center.x);
 | 
						|
        arc.angle2 = a;
 | 
						|
        pArcPts = calloc(3, sizeof(SppPointRec));
 | 
						|
        if (!pArcPts)
 | 
						|
            return;
 | 
						|
        pArcPts[0].x = otherCorner.x;
 | 
						|
        pArcPts[0].y = otherCorner.y;
 | 
						|
        pArcPts[1].x = center.x;
 | 
						|
        pArcPts[1].y = center.y;
 | 
						|
        pArcPts[2].x = corner.x;
 | 
						|
        pArcPts[2].y = corner.y;
 | 
						|
        if ((cpt = miGetArcPts(&arc, 3, &pArcPts))) {
 | 
						|
            /* by drawing with miFillSppPoly and setting the endpoints of the arc
 | 
						|
             * to be the corners, we assure that the cap will meet up with the
 | 
						|
             * rest of the line */
 | 
						|
            miFillSppPoly(pDraw, pGC, cpt, pArcPts, xOrg, yOrg, xFtrans,
 | 
						|
                          yFtrans);
 | 
						|
        }
 | 
						|
        free(pArcPts);
 | 
						|
        return;
 | 
						|
    case JoinMiter:
 | 
						|
        /*
 | 
						|
         * don't miter arcs with less than 11 degrees between them
 | 
						|
         */
 | 
						|
        if (a < 169.0) {
 | 
						|
            poly[0] = corner;
 | 
						|
            poly[1] = center;
 | 
						|
            poly[2] = otherCorner;
 | 
						|
            bc2 = (corner.x - otherCorner.x) * (corner.x - otherCorner.x) +
 | 
						|
                (corner.y - otherCorner.y) * (corner.y - otherCorner.y);
 | 
						|
            ec2 = bc2 / 4;
 | 
						|
            ac2 = (corner.x - center.x) * (corner.x - center.x) +
 | 
						|
                (corner.y - center.y) * (corner.y - center.y);
 | 
						|
            ae = sqrt(ac2 - ec2);
 | 
						|
            de = ec2 / ae;
 | 
						|
            e.x = (corner.x + otherCorner.x) / 2;
 | 
						|
            e.y = (corner.y + otherCorner.y) / 2;
 | 
						|
            poly[3].x = e.x + de * (e.x - center.x) / ae;
 | 
						|
            poly[3].y = e.y + de * (e.y - center.y) / ae;
 | 
						|
            poly[4] = corner;
 | 
						|
            polyLen = 5;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    case JoinBevel:
 | 
						|
        poly[0] = corner;
 | 
						|
        poly[1] = center;
 | 
						|
        poly[2] = otherCorner;
 | 
						|
        poly[3] = corner;
 | 
						|
        polyLen = 4;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    miFillSppPoly(pDraw, pGC, polyLen, poly, xOrg, yOrg, xFtrans, yFtrans);
 | 
						|
}
 | 
						|
 | 
						|
 /*ARGSUSED*/ static void
 | 
						|
miArcCap(DrawablePtr pDraw,
 | 
						|
         GCPtr pGC,
 | 
						|
         miArcFacePtr pFace,
 | 
						|
         int end, int xOrg, int yOrg, double xFtrans, double yFtrans)
 | 
						|
{
 | 
						|
    SppPointRec corner, otherCorner, center, endPoint, poly[5];
 | 
						|
 | 
						|
    corner = pFace->clock;
 | 
						|
    otherCorner = pFace->counterClock;
 | 
						|
    center = pFace->center;
 | 
						|
    switch (pGC->capStyle) {
 | 
						|
    case CapProjecting:
 | 
						|
        poly[0].x = otherCorner.x;
 | 
						|
        poly[0].y = otherCorner.y;
 | 
						|
        poly[1].x = corner.x;
 | 
						|
        poly[1].y = corner.y;
 | 
						|
        poly[2].x = corner.x - (center.y - corner.y);
 | 
						|
        poly[2].y = corner.y + (center.x - corner.x);
 | 
						|
        poly[3].x = otherCorner.x - (otherCorner.y - center.y);
 | 
						|
        poly[3].y = otherCorner.y + (otherCorner.x - center.x);
 | 
						|
        poly[4].x = otherCorner.x;
 | 
						|
        poly[4].y = otherCorner.y;
 | 
						|
        miFillSppPoly(pDraw, pGC, 5, poly, xOrg, yOrg, xFtrans, yFtrans);
 | 
						|
        break;
 | 
						|
    case CapRound:
 | 
						|
        /*
 | 
						|
         * miRoundCap just needs these to be unequal.
 | 
						|
         */
 | 
						|
        endPoint = center;
 | 
						|
        endPoint.x = endPoint.x + 100;
 | 
						|
        miRoundCap(pDraw, pGC, center, endPoint, corner, otherCorner, 0,
 | 
						|
                   -xOrg, -yOrg, xFtrans, yFtrans);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* MIROUNDCAP -- a private helper function
 | 
						|
 * Put Rounded cap on end. pCenter is the center of this end of the line
 | 
						|
 * pEnd is the center of the other end of the line. pCorner is one of the
 | 
						|
 * two corners at this end of the line.
 | 
						|
 * NOTE:  pOtherCorner must be counter-clockwise from pCorner.
 | 
						|
 */
 | 
						|
 /*ARGSUSED*/ static void
 | 
						|
miRoundCap(DrawablePtr pDraw,
 | 
						|
           GCPtr pGC,
 | 
						|
           SppPointRec pCenter,
 | 
						|
           SppPointRec pEnd,
 | 
						|
           SppPointRec pCorner,
 | 
						|
           SppPointRec pOtherCorner,
 | 
						|
           int fLineEnd, int xOrg, int yOrg, double xFtrans, double yFtrans)
 | 
						|
{
 | 
						|
    int cpt;
 | 
						|
    double width;
 | 
						|
    SppArcRec arc;
 | 
						|
    SppPointPtr pArcPts;
 | 
						|
 | 
						|
    width = (pGC->lineWidth ? (double) pGC->lineWidth : (double) 1);
 | 
						|
 | 
						|
    arc.x = pCenter.x - width / 2;
 | 
						|
    arc.y = pCenter.y - width / 2;
 | 
						|
    arc.width = width;
 | 
						|
    arc.height = width;
 | 
						|
    arc.angle1 = -miDatan2(pCorner.y - pCenter.y, pCorner.x - pCenter.x);
 | 
						|
    if (PTISEQUAL(pCenter, pEnd))
 | 
						|
        arc.angle2 = -180.0;
 | 
						|
    else {
 | 
						|
        arc.angle2 =
 | 
						|
            -miDatan2(pOtherCorner.y - pCenter.y,
 | 
						|
                      pOtherCorner.x - pCenter.x) - arc.angle1;
 | 
						|
        if (arc.angle2 < 0)
 | 
						|
            arc.angle2 += 360.0;
 | 
						|
    }
 | 
						|
    pArcPts = (SppPointPtr) NULL;
 | 
						|
    if ((cpt = miGetArcPts(&arc, 0, &pArcPts))) {
 | 
						|
        /* by drawing with miFillSppPoly and setting the endpoints of the arc
 | 
						|
         * to be the corners, we assure that the cap will meet up with the
 | 
						|
         * rest of the line */
 | 
						|
        miFillSppPoly(pDraw, pGC, cpt, pArcPts, -xOrg, -yOrg, xFtrans, yFtrans);
 | 
						|
    }
 | 
						|
    free(pArcPts);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * To avoid inaccuracy at the cardinal points, use trig functions
 | 
						|
 * which are exact for those angles
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef M_PI
 | 
						|
#define M_PI	3.14159265358979323846
 | 
						|
#endif
 | 
						|
#ifndef M_PI_2
 | 
						|
#define M_PI_2	1.57079632679489661923
 | 
						|
#endif
 | 
						|
 | 
						|
#define Dsin(d)	((d) == 0.0 ? 0.0 : ((d) == 90.0 ? 1.0 : sin(d*M_PI/180.0)))
 | 
						|
#define Dcos(d)	((d) == 0.0 ? 1.0 : ((d) == 90.0 ? 0.0 : cos(d*M_PI/180.0)))
 | 
						|
#define mod(a,b)	((a) >= 0 ? (a) % (b) : (b) - (-(a)) % (b))
 | 
						|
 | 
						|
static double
 | 
						|
miDcos(double a)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (floor(a / 90) == a / 90) {
 | 
						|
        i = (int) (a / 90.0);
 | 
						|
        switch (mod(i, 4)) {
 | 
						|
        case 0:
 | 
						|
            return 1;
 | 
						|
        case 1:
 | 
						|
            return 0;
 | 
						|
        case 2:
 | 
						|
            return -1;
 | 
						|
        case 3:
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return cos(a * M_PI / 180.0);
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
miDsin(double a)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (floor(a / 90) == a / 90) {
 | 
						|
        i = (int) (a / 90.0);
 | 
						|
        switch (mod(i, 4)) {
 | 
						|
        case 0:
 | 
						|
            return 0;
 | 
						|
        case 1:
 | 
						|
            return 1;
 | 
						|
        case 2:
 | 
						|
            return 0;
 | 
						|
        case 3:
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return sin(a * M_PI / 180.0);
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
miDasin(double v)
 | 
						|
{
 | 
						|
    if (v == 0)
 | 
						|
        return 0.0;
 | 
						|
    if (v == 1.0)
 | 
						|
        return 90.0;
 | 
						|
    if (v == -1.0)
 | 
						|
        return -90.0;
 | 
						|
    return asin(v) * (180.0 / M_PI);
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
miDatan2(double dy, double dx)
 | 
						|
{
 | 
						|
    if (dy == 0) {
 | 
						|
        if (dx >= 0)
 | 
						|
            return 0.0;
 | 
						|
        return 180.0;
 | 
						|
    }
 | 
						|
    else if (dx == 0) {
 | 
						|
        if (dy > 0)
 | 
						|
            return 90.0;
 | 
						|
        return -90.0;
 | 
						|
    }
 | 
						|
    else if (fabs(dy) == fabs(dx)) {
 | 
						|
        if (dy > 0) {
 | 
						|
            if (dx > 0)
 | 
						|
                return 45.0;
 | 
						|
            return 135.0;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            if (dx > 0)
 | 
						|
                return 315.0;
 | 
						|
            return 225.0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return atan2(dy, dx) * (180.0 / M_PI);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* MIGETARCPTS -- Converts an arc into a set of line segments -- a helper
 | 
						|
 * routine for filled arc and line (round cap) code.
 | 
						|
 * Returns the number of points in the arc.  Note that it takes a pointer
 | 
						|
 * to a pointer to where it should put the points and an index (cpt).
 | 
						|
 * This procedure allocates the space necessary to fit the arc points.
 | 
						|
 * Sometimes it's convenient for those points to be at the end of an existing
 | 
						|
 * array. (For example, if we want to leave a spare point to make sectors
 | 
						|
 * instead of segments.)  So we pass in the calloc()ed chunk that contains the
 | 
						|
 * array and an index saying where we should start stashing the points.
 | 
						|
 * If there isn't an array already, we just pass in a null pointer and
 | 
						|
 * count on realloc() to handle the null pointer correctly.
 | 
						|
 */
 | 
						|
static int
 | 
						|
miGetArcPts(SppArcPtr parc,     /* points to an arc */
 | 
						|
            int cpt,            /* number of points already in arc list */
 | 
						|
            SppPointPtr * ppPts)
 | 
						|
{                               /* pointer to pointer to arc-list -- modified */
 | 
						|
    double st,                  /* Start Theta, start angle */
 | 
						|
     et,                        /* End Theta, offset from start theta */
 | 
						|
     dt,                        /* Delta Theta, angle to sweep ellipse */
 | 
						|
     cdt,                       /* Cos Delta Theta, actually 2 cos(dt) */
 | 
						|
     x0, y0,                    /* the recurrence formula needs two points to start */
 | 
						|
     x1, y1, x2, y2,            /* this will be the new point generated */
 | 
						|
     xc, yc;                    /* the center point */
 | 
						|
    int count, i;
 | 
						|
    SppPointPtr poly;
 | 
						|
 | 
						|
    /* The spec says that positive angles indicate counterclockwise motion.
 | 
						|
     * Given our coordinate system (with 0,0 in the upper left corner),
 | 
						|
     * the screen appears flipped in Y.  The easiest fix is to negate the
 | 
						|
     * angles given */
 | 
						|
 | 
						|
    st = -parc->angle1;
 | 
						|
 | 
						|
    et = -parc->angle2;
 | 
						|
 | 
						|
    /* Try to get a delta theta that is within 1/2 pixel.  Then adjust it
 | 
						|
     * so that it divides evenly into the total.
 | 
						|
     * I'm just using cdt 'cause I'm lazy.
 | 
						|
     */
 | 
						|
    cdt = parc->width;
 | 
						|
    if (parc->height > cdt)
 | 
						|
        cdt = parc->height;
 | 
						|
    cdt /= 2.0;
 | 
						|
    if (cdt <= 0)
 | 
						|
        return 0;
 | 
						|
    if (cdt < 1.0)
 | 
						|
        cdt = 1.0;
 | 
						|
    dt = miDasin(1.0 / cdt);    /* minimum step necessary */
 | 
						|
    count = et / dt;
 | 
						|
    count = abs(count) + 1;
 | 
						|
    dt = et / count;
 | 
						|
    count++;
 | 
						|
 | 
						|
    cdt = 2 * miDcos(dt);
 | 
						|
    if (!(poly = reallocarray(*ppPts, cpt + count, sizeof(SppPointRec))))
 | 
						|
        return 0;
 | 
						|
    *ppPts = poly;
 | 
						|
 | 
						|
    xc = parc->width / 2.0;     /* store half width and half height */
 | 
						|
    yc = parc->height / 2.0;
 | 
						|
 | 
						|
    x0 = xc * miDcos(st);
 | 
						|
    y0 = yc * miDsin(st);
 | 
						|
    x1 = xc * miDcos(st + dt);
 | 
						|
    y1 = yc * miDsin(st + dt);
 | 
						|
    xc += parc->x;              /* by adding initial point, these become */
 | 
						|
    yc += parc->y;              /* the center point */
 | 
						|
 | 
						|
    poly[cpt].x = (xc + x0);
 | 
						|
    poly[cpt].y = (yc + y0);
 | 
						|
    poly[cpt + 1].x = (xc + x1);
 | 
						|
    poly[cpt + 1].y = (yc + y1);
 | 
						|
 | 
						|
    for (i = 2; i < count; i++) {
 | 
						|
        x2 = cdt * x1 - x0;
 | 
						|
        y2 = cdt * y1 - y0;
 | 
						|
 | 
						|
        poly[cpt + i].x = (xc + x2);
 | 
						|
        poly[cpt + i].y = (yc + y2);
 | 
						|
 | 
						|
        x0 = x1;
 | 
						|
        y0 = y1;
 | 
						|
        x1 = x2;
 | 
						|
        y1 = y2;
 | 
						|
    }
 | 
						|
    /* adjust the last point */
 | 
						|
    if (fabs(parc->angle2) >= 360.0)
 | 
						|
        poly[cpt + i - 1] = poly[0];
 | 
						|
    else {
 | 
						|
        poly[cpt + i - 1].x = (miDcos(st + et) * parc->width / 2.0 + xc);
 | 
						|
        poly[cpt + i - 1].y = (miDsin(st + et) * parc->height / 2.0 + yc);
 | 
						|
    }
 | 
						|
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
struct arcData {
 | 
						|
    double x0, y0, x1, y1;
 | 
						|
    int selfJoin;
 | 
						|
};
 | 
						|
 | 
						|
#define ADD_REALLOC_STEP	20
 | 
						|
 | 
						|
static void
 | 
						|
addCap(miArcCapPtr * capsp, int *ncapsp, int *sizep, int end, int arcIndex)
 | 
						|
{
 | 
						|
    int newsize;
 | 
						|
    miArcCapPtr cap;
 | 
						|
 | 
						|
    if (*ncapsp == *sizep) {
 | 
						|
        newsize = *sizep + ADD_REALLOC_STEP;
 | 
						|
        cap = reallocarray(*capsp, newsize, sizeof(**capsp));
 | 
						|
        if (!cap)
 | 
						|
            return;
 | 
						|
        *sizep = newsize;
 | 
						|
        *capsp = cap;
 | 
						|
    }
 | 
						|
    cap = &(*capsp)[*ncapsp];
 | 
						|
    cap->end = end;
 | 
						|
    cap->arcIndex = arcIndex;
 | 
						|
    ++*ncapsp;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
addJoin(miArcJoinPtr * joinsp,
 | 
						|
        int *njoinsp,
 | 
						|
        int *sizep,
 | 
						|
        int end0, int index0, int phase0, int end1, int index1, int phase1)
 | 
						|
{
 | 
						|
    int newsize;
 | 
						|
    miArcJoinPtr join;
 | 
						|
 | 
						|
    if (*njoinsp == *sizep) {
 | 
						|
        newsize = *sizep + ADD_REALLOC_STEP;
 | 
						|
        join = reallocarray(*joinsp, newsize, sizeof(**joinsp));
 | 
						|
        if (!join)
 | 
						|
            return;
 | 
						|
        *sizep = newsize;
 | 
						|
        *joinsp = join;
 | 
						|
    }
 | 
						|
    join = &(*joinsp)[*njoinsp];
 | 
						|
    join->end0 = end0;
 | 
						|
    join->arcIndex0 = index0;
 | 
						|
    join->phase0 = phase0;
 | 
						|
    join->end1 = end1;
 | 
						|
    join->arcIndex1 = index1;
 | 
						|
    join->phase1 = phase1;
 | 
						|
    ++*njoinsp;
 | 
						|
}
 | 
						|
 | 
						|
static miArcDataPtr
 | 
						|
addArc(miArcDataPtr * arcsp, int *narcsp, int *sizep, xArc * xarc)
 | 
						|
{
 | 
						|
    int newsize;
 | 
						|
    miArcDataPtr arc;
 | 
						|
 | 
						|
    if (*narcsp == *sizep) {
 | 
						|
        newsize = *sizep + ADD_REALLOC_STEP;
 | 
						|
        arc = reallocarray(*arcsp, newsize, sizeof(**arcsp));
 | 
						|
        if (!arc)
 | 
						|
            return NULL;
 | 
						|
        *sizep = newsize;
 | 
						|
        *arcsp = arc;
 | 
						|
    }
 | 
						|
    arc = &(*arcsp)[*narcsp];
 | 
						|
    arc->arc = *xarc;
 | 
						|
    ++*narcsp;
 | 
						|
    return arc;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
miFreeArcs(miPolyArcPtr arcs, GCPtr pGC)
 | 
						|
{
 | 
						|
    int iphase;
 | 
						|
 | 
						|
    for (iphase = ((pGC->lineStyle == LineDoubleDash) ? 1 : 0);
 | 
						|
         iphase >= 0; iphase--) {
 | 
						|
        if (arcs[iphase].narcs > 0)
 | 
						|
            free(arcs[iphase].arcs);
 | 
						|
        if (arcs[iphase].njoins > 0)
 | 
						|
            free(arcs[iphase].joins);
 | 
						|
        if (arcs[iphase].ncaps > 0)
 | 
						|
            free(arcs[iphase].caps);
 | 
						|
    }
 | 
						|
    free(arcs);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * map angles to radial distance.  This only deals with the first quadrant
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * a polygonal approximation to the arc for computing arc lengths
 | 
						|
 */
 | 
						|
 | 
						|
#define DASH_MAP_SIZE	91
 | 
						|
 | 
						|
#define dashIndexToAngle(di)	((((double) (di)) * 90.0) / ((double) DASH_MAP_SIZE - 1))
 | 
						|
#define xAngleToDashIndex(xa)	((((long) (xa)) * (DASH_MAP_SIZE - 1)) / (90 * 64))
 | 
						|
#define dashIndexToXAngle(di)	((((long) (di)) * (90 * 64)) / (DASH_MAP_SIZE - 1))
 | 
						|
#define dashXAngleStep	(((double) (90 * 64)) / ((double) (DASH_MAP_SIZE - 1)))
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    double map[DASH_MAP_SIZE];
 | 
						|
} dashMap;
 | 
						|
 | 
						|
static int computeAngleFromPath(int startAngle, int endAngle, dashMap * map,
 | 
						|
                                int *lenp, int backwards);
 | 
						|
 | 
						|
static void
 | 
						|
computeDashMap(xArc * arcp, dashMap * map)
 | 
						|
{
 | 
						|
    int di;
 | 
						|
    double a, x, y, prevx = 0.0, prevy = 0.0, dist;
 | 
						|
 | 
						|
    for (di = 0; di < DASH_MAP_SIZE; di++) {
 | 
						|
        a = dashIndexToAngle(di);
 | 
						|
        x = ((double) arcp->width / 2.0) * miDcos(a);
 | 
						|
        y = ((double) arcp->height / 2.0) * miDsin(a);
 | 
						|
        if (di == 0) {
 | 
						|
            map->map[di] = 0.0;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            dist = hypot(x - prevx, y - prevy);
 | 
						|
            map->map[di] = map->map[di - 1] + dist;
 | 
						|
        }
 | 
						|
        prevx = x;
 | 
						|
        prevy = y;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef enum { HORIZONTAL, VERTICAL, OTHER } arcTypes;
 | 
						|
 | 
						|
/* this routine is a bit gory */
 | 
						|
 | 
						|
static miPolyArcPtr
 | 
						|
miComputeArcs(xArc * parcs, int narcs, GCPtr pGC)
 | 
						|
{
 | 
						|
    int isDashed, isDoubleDash;
 | 
						|
    int dashOffset;
 | 
						|
    miPolyArcPtr arcs;
 | 
						|
    int start, i, j, k = 0, nexti, nextk = 0;
 | 
						|
    int joinSize[2];
 | 
						|
    int capSize[2];
 | 
						|
    int arcSize[2];
 | 
						|
    int angle2;
 | 
						|
    double a0, a1;
 | 
						|
    struct arcData *data;
 | 
						|
    miArcDataPtr arc;
 | 
						|
    xArc xarc;
 | 
						|
    int iphase, prevphase = 0, joinphase;
 | 
						|
    int arcsJoin;
 | 
						|
    int selfJoin;
 | 
						|
 | 
						|
    int iDash = 0, dashRemaining = 0;
 | 
						|
    int iDashStart = 0, dashRemainingStart = 0, iphaseStart;
 | 
						|
    int startAngle, spanAngle, endAngle, backwards = 0;
 | 
						|
    int prevDashAngle, dashAngle;
 | 
						|
    dashMap map;
 | 
						|
 | 
						|
    isDashed = !(pGC->lineStyle == LineSolid);
 | 
						|
    isDoubleDash = (pGC->lineStyle == LineDoubleDash);
 | 
						|
    dashOffset = pGC->dashOffset;
 | 
						|
 | 
						|
    data = calloc(narcs, sizeof(struct arcData));
 | 
						|
    if (!data)
 | 
						|
        return NULL;
 | 
						|
    arcs = calloc(isDoubleDash ? 2 : 1, sizeof(*arcs));
 | 
						|
    if (!arcs) {
 | 
						|
        free(data);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    for (i = 0; i < narcs; i++) {
 | 
						|
        a0 = todeg(parcs[i].angle1);
 | 
						|
        angle2 = parcs[i].angle2;
 | 
						|
        if (angle2 > FULLCIRCLE)
 | 
						|
            angle2 = FULLCIRCLE;
 | 
						|
        else if (angle2 < -FULLCIRCLE)
 | 
						|
            angle2 = -FULLCIRCLE;
 | 
						|
        data[i].selfJoin = angle2 == FULLCIRCLE || angle2 == -FULLCIRCLE;
 | 
						|
        a1 = todeg(parcs[i].angle1 + angle2);
 | 
						|
        data[i].x0 =
 | 
						|
            parcs[i].x + (double) parcs[i].width / 2 * (1 + miDcos(a0));
 | 
						|
        data[i].y0 =
 | 
						|
            parcs[i].y + (double) parcs[i].height / 2 * (1 - miDsin(a0));
 | 
						|
        data[i].x1 =
 | 
						|
            parcs[i].x + (double) parcs[i].width / 2 * (1 + miDcos(a1));
 | 
						|
        data[i].y1 =
 | 
						|
            parcs[i].y + (double) parcs[i].height / 2 * (1 - miDsin(a1));
 | 
						|
    }
 | 
						|
 | 
						|
    for (iphase = 0; iphase < (isDoubleDash ? 2 : 1); iphase++) {
 | 
						|
        arcs[iphase].njoins = 0;
 | 
						|
        arcs[iphase].joins = 0;
 | 
						|
        joinSize[iphase] = 0;
 | 
						|
 | 
						|
        arcs[iphase].ncaps = 0;
 | 
						|
        arcs[iphase].caps = 0;
 | 
						|
        capSize[iphase] = 0;
 | 
						|
 | 
						|
        arcs[iphase].narcs = 0;
 | 
						|
        arcs[iphase].arcs = 0;
 | 
						|
        arcSize[iphase] = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    iphase = 0;
 | 
						|
    if (isDashed) {
 | 
						|
        iDash = 0;
 | 
						|
        dashRemaining = pGC->dash[0];
 | 
						|
        while (dashOffset > 0) {
 | 
						|
            if (dashOffset >= dashRemaining) {
 | 
						|
                dashOffset -= dashRemaining;
 | 
						|
                iphase = iphase ? 0 : 1;
 | 
						|
                iDash++;
 | 
						|
                if (iDash == pGC->numInDashList)
 | 
						|
                    iDash = 0;
 | 
						|
                dashRemaining = pGC->dash[iDash];
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                dashRemaining -= dashOffset;
 | 
						|
                dashOffset = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        iDashStart = iDash;
 | 
						|
        dashRemainingStart = dashRemaining;
 | 
						|
    }
 | 
						|
    iphaseStart = iphase;
 | 
						|
 | 
						|
    for (i = narcs - 1; i >= 0; i--) {
 | 
						|
        j = i + 1;
 | 
						|
        if (j == narcs)
 | 
						|
            j = 0;
 | 
						|
        if (data[i].selfJoin || i == j ||
 | 
						|
            (UNEQUAL(data[i].x1, data[j].x0) ||
 | 
						|
             UNEQUAL(data[i].y1, data[j].y0))) {
 | 
						|
            if (iphase == 0 || isDoubleDash)
 | 
						|
                addCap(&arcs[iphase].caps, &arcs[iphase].ncaps,
 | 
						|
                       &capSize[iphase], RIGHT_END, 0);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    start = i + 1;
 | 
						|
    if (start == narcs)
 | 
						|
        start = 0;
 | 
						|
    i = start;
 | 
						|
    for (;;) {
 | 
						|
        j = i + 1;
 | 
						|
        if (j == narcs)
 | 
						|
            j = 0;
 | 
						|
        nexti = i + 1;
 | 
						|
        if (nexti == narcs)
 | 
						|
            nexti = 0;
 | 
						|
        if (isDashed) {
 | 
						|
            /*
 | 
						|
             ** deal with dashed arcs.  Use special rules for certain 0 area arcs.
 | 
						|
             ** Presumably, the other 0 area arcs still aren't done right.
 | 
						|
             */
 | 
						|
            arcTypes arcType = OTHER;
 | 
						|
            CARD16 thisLength;
 | 
						|
 | 
						|
            if (parcs[i].height == 0
 | 
						|
                && (parcs[i].angle1 % FULLCIRCLE) == 0x2d00
 | 
						|
                && parcs[i].angle2 == 0x2d00)
 | 
						|
                arcType = HORIZONTAL;
 | 
						|
            else if (parcs[i].width == 0
 | 
						|
                     && (parcs[i].angle1 % FULLCIRCLE) == 0x1680
 | 
						|
                     && parcs[i].angle2 == 0x2d00)
 | 
						|
                arcType = VERTICAL;
 | 
						|
            if (arcType == OTHER) {
 | 
						|
                /*
 | 
						|
                 * precompute an approximation map
 | 
						|
                 */
 | 
						|
                computeDashMap(&parcs[i], &map);
 | 
						|
                /*
 | 
						|
                 * compute each individual dash segment using the path
 | 
						|
                 * length function
 | 
						|
                 */
 | 
						|
                startAngle = parcs[i].angle1;
 | 
						|
                spanAngle = parcs[i].angle2;
 | 
						|
                if (spanAngle > FULLCIRCLE)
 | 
						|
                    spanAngle = FULLCIRCLE;
 | 
						|
                else if (spanAngle < -FULLCIRCLE)
 | 
						|
                    spanAngle = -FULLCIRCLE;
 | 
						|
                if (startAngle < 0)
 | 
						|
                    startAngle = FULLCIRCLE - (-startAngle) % FULLCIRCLE;
 | 
						|
                if (startAngle >= FULLCIRCLE)
 | 
						|
                    startAngle = startAngle % FULLCIRCLE;
 | 
						|
                endAngle = startAngle + spanAngle;
 | 
						|
                backwards = spanAngle < 0;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                xarc = parcs[i];
 | 
						|
                if (arcType == VERTICAL) {
 | 
						|
                    xarc.angle1 = 0x1680;
 | 
						|
                    startAngle = parcs[i].y;
 | 
						|
                    endAngle = startAngle + parcs[i].height;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    xarc.angle1 = 0x2d00;
 | 
						|
                    startAngle = parcs[i].x;
 | 
						|
                    endAngle = startAngle + parcs[i].width;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            dashAngle = startAngle;
 | 
						|
            selfJoin = data[i].selfJoin && (iphase == 0 || isDoubleDash);
 | 
						|
            /*
 | 
						|
             * add dashed arcs to each bucket
 | 
						|
             */
 | 
						|
            arc = 0;
 | 
						|
            while (dashAngle != endAngle) {
 | 
						|
                prevDashAngle = dashAngle;
 | 
						|
                if (arcType == OTHER) {
 | 
						|
                    dashAngle = computeAngleFromPath(prevDashAngle, endAngle,
 | 
						|
                                                     &map, &dashRemaining,
 | 
						|
                                                     backwards);
 | 
						|
                    /* avoid troubles with huge arcs and small dashes */
 | 
						|
                    if (dashAngle == prevDashAngle) {
 | 
						|
                        if (backwards)
 | 
						|
                            dashAngle--;
 | 
						|
                        else
 | 
						|
                            dashAngle++;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    thisLength = (dashAngle + dashRemaining <= endAngle) ?
 | 
						|
                        dashRemaining : endAngle - dashAngle;
 | 
						|
                    if (arcType == VERTICAL) {
 | 
						|
                        xarc.y = dashAngle;
 | 
						|
                        xarc.height = thisLength;
 | 
						|
                    }
 | 
						|
                    else {
 | 
						|
                        xarc.x = dashAngle;
 | 
						|
                        xarc.width = thisLength;
 | 
						|
                    }
 | 
						|
                    dashAngle += thisLength;
 | 
						|
                    dashRemaining -= thisLength;
 | 
						|
                }
 | 
						|
                if (iphase == 0 || isDoubleDash) {
 | 
						|
                    if (arcType == OTHER) {
 | 
						|
                        xarc = parcs[i];
 | 
						|
                        spanAngle = prevDashAngle;
 | 
						|
                        if (spanAngle < 0)
 | 
						|
                            spanAngle = FULLCIRCLE - (-spanAngle) % FULLCIRCLE;
 | 
						|
                        if (spanAngle >= FULLCIRCLE)
 | 
						|
                            spanAngle = spanAngle % FULLCIRCLE;
 | 
						|
                        xarc.angle1 = spanAngle;
 | 
						|
                        spanAngle = dashAngle - prevDashAngle;
 | 
						|
                        if (backwards) {
 | 
						|
                            if (dashAngle > prevDashAngle)
 | 
						|
                                spanAngle = -FULLCIRCLE + spanAngle;
 | 
						|
                        }
 | 
						|
                        else {
 | 
						|
                            if (dashAngle < prevDashAngle)
 | 
						|
                                spanAngle = FULLCIRCLE + spanAngle;
 | 
						|
                        }
 | 
						|
                        if (spanAngle > FULLCIRCLE)
 | 
						|
                            spanAngle = FULLCIRCLE;
 | 
						|
                        if (spanAngle < -FULLCIRCLE)
 | 
						|
                            spanAngle = -FULLCIRCLE;
 | 
						|
                        xarc.angle2 = spanAngle;
 | 
						|
                    }
 | 
						|
                    arc = addArc(&arcs[iphase].arcs, &arcs[iphase].narcs,
 | 
						|
                                 &arcSize[iphase], &xarc);
 | 
						|
                    if (!arc)
 | 
						|
                        goto arcfail;
 | 
						|
                    /*
 | 
						|
                     * cap each end of an on/off dash
 | 
						|
                     */
 | 
						|
                    if (!isDoubleDash) {
 | 
						|
                        if (prevDashAngle != startAngle) {
 | 
						|
                            addCap(&arcs[iphase].caps,
 | 
						|
                                   &arcs[iphase].ncaps,
 | 
						|
                                   &capSize[iphase], RIGHT_END,
 | 
						|
                                   arc - arcs[iphase].arcs);
 | 
						|
 | 
						|
                        }
 | 
						|
                        if (dashAngle != endAngle) {
 | 
						|
                            addCap(&arcs[iphase].caps,
 | 
						|
                                   &arcs[iphase].ncaps,
 | 
						|
                                   &capSize[iphase], LEFT_END,
 | 
						|
                                   arc - arcs[iphase].arcs);
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    arc->cap = arcs[iphase].ncaps;
 | 
						|
                    arc->join = arcs[iphase].njoins;
 | 
						|
                    arc->render = 0;
 | 
						|
                    arc->selfJoin = 0;
 | 
						|
                    if (dashAngle == endAngle)
 | 
						|
                        arc->selfJoin = selfJoin;
 | 
						|
                }
 | 
						|
                prevphase = iphase;
 | 
						|
                if (dashRemaining <= 0) {
 | 
						|
                    ++iDash;
 | 
						|
                    if (iDash == pGC->numInDashList)
 | 
						|
                        iDash = 0;
 | 
						|
                    iphase = iphase ? 0 : 1;
 | 
						|
                    dashRemaining = pGC->dash[iDash];
 | 
						|
                }
 | 
						|
            }
 | 
						|
            /*
 | 
						|
             * make sure a place exists for the position data when
 | 
						|
             * drawing a zero-length arc
 | 
						|
             */
 | 
						|
            if (startAngle == endAngle) {
 | 
						|
                prevphase = iphase;
 | 
						|
                if (!isDoubleDash && iphase == 1)
 | 
						|
                    prevphase = 0;
 | 
						|
                arc = addArc(&arcs[prevphase].arcs, &arcs[prevphase].narcs,
 | 
						|
                             &arcSize[prevphase], &parcs[i]);
 | 
						|
                if (!arc)
 | 
						|
                    goto arcfail;
 | 
						|
                arc->join = arcs[prevphase].njoins;
 | 
						|
                arc->cap = arcs[prevphase].ncaps;
 | 
						|
                arc->selfJoin = data[i].selfJoin;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            arc = addArc(&arcs[iphase].arcs, &arcs[iphase].narcs,
 | 
						|
                         &arcSize[iphase], &parcs[i]);
 | 
						|
            if (!arc)
 | 
						|
                goto arcfail;
 | 
						|
            arc->join = arcs[iphase].njoins;
 | 
						|
            arc->cap = arcs[iphase].ncaps;
 | 
						|
            arc->selfJoin = data[i].selfJoin;
 | 
						|
            prevphase = iphase;
 | 
						|
        }
 | 
						|
        if (prevphase == 0 || isDoubleDash)
 | 
						|
            k = arcs[prevphase].narcs - 1;
 | 
						|
        if (iphase == 0 || isDoubleDash)
 | 
						|
            nextk = arcs[iphase].narcs;
 | 
						|
        if (nexti == start) {
 | 
						|
            nextk = 0;
 | 
						|
            if (isDashed) {
 | 
						|
                iDash = iDashStart;
 | 
						|
                iphase = iphaseStart;
 | 
						|
                dashRemaining = dashRemainingStart;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        arcsJoin = narcs > 1 && i != j &&
 | 
						|
            ISEQUAL(data[i].x1, data[j].x0) &&
 | 
						|
            ISEQUAL(data[i].y1, data[j].y0) &&
 | 
						|
            !data[i].selfJoin && !data[j].selfJoin;
 | 
						|
        if (arc) {
 | 
						|
            if (arcsJoin)
 | 
						|
                arc->render = 0;
 | 
						|
            else
 | 
						|
                arc->render = 1;
 | 
						|
        }
 | 
						|
        if (arcsJoin &&
 | 
						|
            (prevphase == 0 || isDoubleDash) && (iphase == 0 || isDoubleDash)) {
 | 
						|
            joinphase = iphase;
 | 
						|
            if (isDoubleDash) {
 | 
						|
                if (nexti == start)
 | 
						|
                    joinphase = iphaseStart;
 | 
						|
                /*
 | 
						|
                 * if the join is right at the dash,
 | 
						|
                 * draw the join in foreground
 | 
						|
                 * This is because the foreground
 | 
						|
                 * arcs are computed second, the results
 | 
						|
                 * of which are needed to draw the join
 | 
						|
                 */
 | 
						|
                if (joinphase != prevphase)
 | 
						|
                    joinphase = 0;
 | 
						|
            }
 | 
						|
            if (joinphase == 0 || isDoubleDash) {
 | 
						|
                addJoin(&arcs[joinphase].joins,
 | 
						|
                        &arcs[joinphase].njoins,
 | 
						|
                        &joinSize[joinphase],
 | 
						|
                        LEFT_END, k, prevphase, RIGHT_END, nextk, iphase);
 | 
						|
                arc->join = arcs[prevphase].njoins;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            /*
 | 
						|
             * cap the left end of this arc
 | 
						|
             * unless it joins itself
 | 
						|
             */
 | 
						|
            if ((prevphase == 0 || isDoubleDash) && !arc->selfJoin) {
 | 
						|
                addCap(&arcs[prevphase].caps, &arcs[prevphase].ncaps,
 | 
						|
                       &capSize[prevphase], LEFT_END, k);
 | 
						|
                arc->cap = arcs[prevphase].ncaps;
 | 
						|
            }
 | 
						|
            if (isDashed && !arcsJoin) {
 | 
						|
                iDash = iDashStart;
 | 
						|
                iphase = iphaseStart;
 | 
						|
                dashRemaining = dashRemainingStart;
 | 
						|
            }
 | 
						|
            nextk = arcs[iphase].narcs;
 | 
						|
            if (nexti == start) {
 | 
						|
                nextk = 0;
 | 
						|
                iDash = iDashStart;
 | 
						|
                iphase = iphaseStart;
 | 
						|
                dashRemaining = dashRemainingStart;
 | 
						|
            }
 | 
						|
            /*
 | 
						|
             * cap the right end of the next arc.  If the
 | 
						|
             * next arc is actually the first arc, only
 | 
						|
             * cap it if it joins with this arc.  This
 | 
						|
             * case will occur when the final dash segment
 | 
						|
             * of an on/off dash is off.  Of course, this
 | 
						|
             * cap will be drawn at a strange time, but that
 | 
						|
             * hardly matters...
 | 
						|
             */
 | 
						|
            if ((iphase == 0 || isDoubleDash) &&
 | 
						|
                (nexti != start || (arcsJoin && isDashed)))
 | 
						|
                addCap(&arcs[iphase].caps, &arcs[iphase].ncaps,
 | 
						|
                       &capSize[iphase], RIGHT_END, nextk);
 | 
						|
        }
 | 
						|
        i = nexti;
 | 
						|
        if (i == start)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * make sure the last section is rendered
 | 
						|
     */
 | 
						|
    for (iphase = 0; iphase < (isDoubleDash ? 2 : 1); iphase++)
 | 
						|
        if (arcs[iphase].narcs > 0) {
 | 
						|
            arcs[iphase].arcs[arcs[iphase].narcs - 1].render = 1;
 | 
						|
            arcs[iphase].arcs[arcs[iphase].narcs - 1].join =
 | 
						|
                arcs[iphase].njoins;
 | 
						|
            arcs[iphase].arcs[arcs[iphase].narcs - 1].cap = arcs[iphase].ncaps;
 | 
						|
        }
 | 
						|
    free(data);
 | 
						|
    return arcs;
 | 
						|
 arcfail:
 | 
						|
    miFreeArcs(arcs, pGC);
 | 
						|
    free(data);
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
angleToLength(int angle, dashMap * map)
 | 
						|
{
 | 
						|
    double len, excesslen, sidelen = map->map[DASH_MAP_SIZE - 1], totallen;
 | 
						|
    int di;
 | 
						|
    int excess;
 | 
						|
    Bool oddSide = FALSE;
 | 
						|
 | 
						|
    totallen = 0;
 | 
						|
    if (angle >= 0) {
 | 
						|
        while (angle >= 90 * 64) {
 | 
						|
            angle -= 90 * 64;
 | 
						|
            totallen += sidelen;
 | 
						|
            oddSide = !oddSide;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        while (angle < 0) {
 | 
						|
            angle += 90 * 64;
 | 
						|
            totallen -= sidelen;
 | 
						|
            oddSide = !oddSide;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (oddSide)
 | 
						|
        angle = 90 * 64 - angle;
 | 
						|
 | 
						|
    di = xAngleToDashIndex(angle);
 | 
						|
    excess = angle - dashIndexToXAngle(di);
 | 
						|
 | 
						|
    len = map->map[di];
 | 
						|
    /*
 | 
						|
     * linearly interpolate between this point and the next
 | 
						|
     */
 | 
						|
    if (excess > 0) {
 | 
						|
        excesslen = (map->map[di + 1] - map->map[di]) *
 | 
						|
            ((double) excess) / dashXAngleStep;
 | 
						|
        len += excesslen;
 | 
						|
    }
 | 
						|
    if (oddSide)
 | 
						|
        totallen += (sidelen - len);
 | 
						|
    else
 | 
						|
        totallen += len;
 | 
						|
    return totallen;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * len is along the arc, but may be more than one rotation
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
lengthToAngle(double len, dashMap * map)
 | 
						|
{
 | 
						|
    double sidelen = map->map[DASH_MAP_SIZE - 1];
 | 
						|
    int angle, angleexcess;
 | 
						|
    Bool oddSide = FALSE;
 | 
						|
    int a0, a1, a;
 | 
						|
 | 
						|
    angle = 0;
 | 
						|
    /*
 | 
						|
     * step around the ellipse, subtracting sidelens and
 | 
						|
     * adding 90 degrees.  oddSide will tell if the
 | 
						|
     * map should be interpolated in reverse
 | 
						|
     */
 | 
						|
    if (len >= 0) {
 | 
						|
        if (sidelen == 0)
 | 
						|
            return 2 * FULLCIRCLE;      /* infinity */
 | 
						|
        while (len >= sidelen) {
 | 
						|
            angle += 90 * 64;
 | 
						|
            len -= sidelen;
 | 
						|
            oddSide = !oddSide;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (sidelen == 0)
 | 
						|
            return -2 * FULLCIRCLE;     /* infinity */
 | 
						|
        while (len < 0) {
 | 
						|
            angle -= 90 * 64;
 | 
						|
            len += sidelen;
 | 
						|
            oddSide = !oddSide;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (oddSide)
 | 
						|
        len = sidelen - len;
 | 
						|
    a0 = 0;
 | 
						|
    a1 = DASH_MAP_SIZE - 1;
 | 
						|
    /*
 | 
						|
     * binary search for the closest pre-computed length
 | 
						|
     */
 | 
						|
    while (a1 - a0 > 1) {
 | 
						|
        a = (a0 + a1) / 2;
 | 
						|
        if (len > map->map[a])
 | 
						|
            a0 = a;
 | 
						|
        else
 | 
						|
            a1 = a;
 | 
						|
    }
 | 
						|
    angleexcess = dashIndexToXAngle(a0);
 | 
						|
    /*
 | 
						|
     * linearly interpolate to the next point
 | 
						|
     */
 | 
						|
    angleexcess += (len - map->map[a0]) /
 | 
						|
        (map->map[a0 + 1] - map->map[a0]) * dashXAngleStep;
 | 
						|
    if (oddSide)
 | 
						|
        angle += (90 * 64) - angleexcess;
 | 
						|
    else
 | 
						|
        angle += angleexcess;
 | 
						|
    return angle;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * compute the angle of an ellipse which corresponds to
 | 
						|
 * the given path length.  Note that the correct solution
 | 
						|
 * to this problem is an eliptic integral, we'll punt and
 | 
						|
 * approximate (it's only for dashes anyway).  This
 | 
						|
 * approximation uses a polygon.
 | 
						|
 *
 | 
						|
 * The remaining portion of len is stored in *lenp -
 | 
						|
 * this will be negative if the arc extends beyond
 | 
						|
 * len and positive if len extends beyond the arc.
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
computeAngleFromPath(int startAngle, int endAngle,      /* normalized absolute angles in *64 degrees */
 | 
						|
                     dashMap * map, int *lenp, int backwards)
 | 
						|
{
 | 
						|
    int a0, a1, a;
 | 
						|
    double len0;
 | 
						|
    int len;
 | 
						|
 | 
						|
    a0 = startAngle;
 | 
						|
    a1 = endAngle;
 | 
						|
    len = *lenp;
 | 
						|
    if (backwards) {
 | 
						|
        /*
 | 
						|
         * flip the problem around to always be
 | 
						|
         * forwards
 | 
						|
         */
 | 
						|
        a0 = FULLCIRCLE - a0;
 | 
						|
        a1 = FULLCIRCLE - a1;
 | 
						|
    }
 | 
						|
    if (a1 < a0)
 | 
						|
        a1 += FULLCIRCLE;
 | 
						|
    len0 = angleToLength(a0, map);
 | 
						|
    a = lengthToAngle(len0 + len, map);
 | 
						|
    if (a > a1) {
 | 
						|
        a = a1;
 | 
						|
        len -= angleToLength(a1, map) - len0;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        len = 0;
 | 
						|
    if (backwards)
 | 
						|
        a = FULLCIRCLE - a;
 | 
						|
    *lenp = len;
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * scan convert wide arcs.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * draw zero width/height arcs
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
drawZeroArc(DrawablePtr pDraw,
 | 
						|
            GCPtr pGC,
 | 
						|
            xArc * tarc, int lw, miArcFacePtr left, miArcFacePtr right)
 | 
						|
{
 | 
						|
    double x0 = 0.0, y0 = 0.0, x1 = 0.0, y1 = 0.0, w, h, x, y;
 | 
						|
    double xmax, ymax, xmin, ymin;
 | 
						|
    int a0, a1;
 | 
						|
    double a, startAngle, endAngle;
 | 
						|
    double l, lx, ly;
 | 
						|
 | 
						|
    l = lw / 2.0;
 | 
						|
    a0 = tarc->angle1;
 | 
						|
    a1 = tarc->angle2;
 | 
						|
    if (a1 > FULLCIRCLE)
 | 
						|
        a1 = FULLCIRCLE;
 | 
						|
    else if (a1 < -FULLCIRCLE)
 | 
						|
        a1 = -FULLCIRCLE;
 | 
						|
    w = (double) tarc->width / 2.0;
 | 
						|
    h = (double) tarc->height / 2.0;
 | 
						|
    /*
 | 
						|
     * play in X coordinates right away
 | 
						|
     */
 | 
						|
    startAngle = -((double) a0 / 64.0);
 | 
						|
    endAngle = -((double) (a0 + a1) / 64.0);
 | 
						|
 | 
						|
    xmax = -w;
 | 
						|
    xmin = w;
 | 
						|
    ymax = -h;
 | 
						|
    ymin = h;
 | 
						|
    a = startAngle;
 | 
						|
    for (;;) {
 | 
						|
        x = w * miDcos(a);
 | 
						|
        y = h * miDsin(a);
 | 
						|
        if (a == startAngle) {
 | 
						|
            x0 = x;
 | 
						|
            y0 = y;
 | 
						|
        }
 | 
						|
        if (a == endAngle) {
 | 
						|
            x1 = x;
 | 
						|
            y1 = y;
 | 
						|
        }
 | 
						|
        if (x > xmax)
 | 
						|
            xmax = x;
 | 
						|
        if (x < xmin)
 | 
						|
            xmin = x;
 | 
						|
        if (y > ymax)
 | 
						|
            ymax = y;
 | 
						|
        if (y < ymin)
 | 
						|
            ymin = y;
 | 
						|
        if (a == endAngle)
 | 
						|
            break;
 | 
						|
        if (a1 < 0) {           /* clockwise */
 | 
						|
            if (floor(a / 90.0) == floor(endAngle / 90.0))
 | 
						|
                a = endAngle;
 | 
						|
            else
 | 
						|
                a = 90 * (floor(a / 90.0) + 1);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            if (ceil(a / 90.0) == ceil(endAngle / 90.0))
 | 
						|
                a = endAngle;
 | 
						|
            else
 | 
						|
                a = 90 * (ceil(a / 90.0) - 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    lx = ly = l;
 | 
						|
    if ((x1 - x0) + (y1 - y0) < 0)
 | 
						|
        lx = ly = -l;
 | 
						|
    if (h) {
 | 
						|
        ly = 0.0;
 | 
						|
        lx = -lx;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        lx = 0.0;
 | 
						|
    if (right) {
 | 
						|
        right->center.x = x0;
 | 
						|
        right->center.y = y0;
 | 
						|
        right->clock.x = x0 - lx;
 | 
						|
        right->clock.y = y0 - ly;
 | 
						|
        right->counterClock.x = x0 + lx;
 | 
						|
        right->counterClock.y = y0 + ly;
 | 
						|
    }
 | 
						|
    if (left) {
 | 
						|
        left->center.x = x1;
 | 
						|
        left->center.y = y1;
 | 
						|
        left->clock.x = x1 + lx;
 | 
						|
        left->clock.y = y1 + ly;
 | 
						|
        left->counterClock.x = x1 - lx;
 | 
						|
        left->counterClock.y = y1 - ly;
 | 
						|
    }
 | 
						|
 | 
						|
    x0 = xmin;
 | 
						|
    x1 = xmax;
 | 
						|
    y0 = ymin;
 | 
						|
    y1 = ymax;
 | 
						|
    if (ymin != y1) {
 | 
						|
        xmin = -l;
 | 
						|
        xmax = l;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        ymin = -l;
 | 
						|
        ymax = l;
 | 
						|
    }
 | 
						|
    if (xmax != xmin && ymax != ymin) {
 | 
						|
        int minx, maxx, miny, maxy;
 | 
						|
        xRectangle rect;
 | 
						|
 | 
						|
        minx = ICEIL(xmin + w) + tarc->x;
 | 
						|
        maxx = ICEIL(xmax + w) + tarc->x;
 | 
						|
        miny = ICEIL(ymin + h) + tarc->y;
 | 
						|
        maxy = ICEIL(ymax + h) + tarc->y;
 | 
						|
        rect.x = minx;
 | 
						|
        rect.y = miny;
 | 
						|
        rect.width = maxx - minx;
 | 
						|
        rect.height = maxy - miny;
 | 
						|
        (*pGC->ops->PolyFillRect) (pDraw, pGC, 1, &rect);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this computes the ellipse y value associated with the
 | 
						|
 * bottom of the tail.
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
tailEllipseY(struct arc_def *def, struct accelerators *acc)
 | 
						|
{
 | 
						|
    double t;
 | 
						|
 | 
						|
    acc->tail_y = 0.0;
 | 
						|
    if (def->w == def->h)
 | 
						|
        return;
 | 
						|
    t = def->l * def->w;
 | 
						|
    if (def->w > def->h) {
 | 
						|
        if (t < acc->h2)
 | 
						|
            return;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (t > acc->h2)
 | 
						|
            return;
 | 
						|
    }
 | 
						|
    t = 2.0 * def->h * t;
 | 
						|
    t = (CUBED_ROOT_4 * acc->h2 - cbrt(t * t)) / acc->h2mw2;
 | 
						|
    if (t > 0.0)
 | 
						|
        acc->tail_y = def->h / CUBED_ROOT_2 * sqrt(t);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * inverse functions -- compute edge coordinates
 | 
						|
 * from the ellipse
 | 
						|
 */
 | 
						|
 | 
						|
static double
 | 
						|
outerXfromXY(double x, double y, struct arc_def *def, struct accelerators *acc)
 | 
						|
{
 | 
						|
    return x + (x * acc->h2l) / sqrt(x * x * acc->h4 + y * y * acc->w4);
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
outerYfromXY(double x, double y, struct arc_def *def, struct accelerators *acc)
 | 
						|
{
 | 
						|
    return y + (y * acc->w2l) / sqrt(x * x * acc->h4 + y * y * acc->w4);
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
innerXfromXY(double x, double y, struct arc_def *def, struct accelerators *acc)
 | 
						|
{
 | 
						|
    return x - (x * acc->h2l) / sqrt(x * x * acc->h4 + y * y * acc->w4);
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
innerYfromXY(double x, double y, struct arc_def *def, struct accelerators *acc)
 | 
						|
{
 | 
						|
    return y - (y * acc->w2l) / sqrt(x * x * acc->h4 + y * y * acc->w4);
 | 
						|
}
 | 
						|
 | 
						|
static double
 | 
						|
innerYfromY(double y, struct arc_def *def, struct accelerators *acc)
 | 
						|
{
 | 
						|
    double x;
 | 
						|
 | 
						|
    x = (def->w / def->h) * sqrt(acc->h2 - y * y);
 | 
						|
 | 
						|
    return y - (y * acc->w2l) / sqrt(x * x * acc->h4 + y * y * acc->w4);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
computeLine(double x1, double y1, double x2, double y2, struct line *line)
 | 
						|
{
 | 
						|
    if (y1 == y2)
 | 
						|
        line->valid = 0;
 | 
						|
    else {
 | 
						|
        line->m = (x1 - x2) / (y1 - y2);
 | 
						|
        line->b = x1 - y1 * line->m;
 | 
						|
        line->valid = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * compute various accelerators for an ellipse.  These
 | 
						|
 * are simply values that are used repeatedly in
 | 
						|
 * the computations
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
computeAcc(xArc * tarc, int lw, struct arc_def *def, struct accelerators *acc)
 | 
						|
{
 | 
						|
    def->w = ((double) tarc->width) / 2.0;
 | 
						|
    def->h = ((double) tarc->height) / 2.0;
 | 
						|
    def->l = ((double) lw) / 2.0;
 | 
						|
    acc->h2 = def->h * def->h;
 | 
						|
    acc->w2 = def->w * def->w;
 | 
						|
    acc->h4 = acc->h2 * acc->h2;
 | 
						|
    acc->w4 = acc->w2 * acc->w2;
 | 
						|
    acc->h2l = acc->h2 * def->l;
 | 
						|
    acc->w2l = acc->w2 * def->l;
 | 
						|
    acc->h2mw2 = acc->h2 - acc->w2;
 | 
						|
    acc->fromIntX = (tarc->width & 1) ? 0.5 : 0.0;
 | 
						|
    acc->fromIntY = (tarc->height & 1) ? 0.5 : 0.0;
 | 
						|
    acc->xorg = tarc->x + (tarc->width >> 1);
 | 
						|
    acc->yorgu = tarc->y + (tarc->height >> 1);
 | 
						|
    acc->yorgl = acc->yorgu + (tarc->height & 1);
 | 
						|
    tailEllipseY(def, acc);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * compute y value bounds of various portions of the arc,
 | 
						|
 * the outer edge, the ellipse and the inner edge.
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
computeBound(struct arc_def *def,
 | 
						|
             struct arc_bound *bound,
 | 
						|
             struct accelerators *acc, miArcFacePtr right, miArcFacePtr left)
 | 
						|
{
 | 
						|
    double t;
 | 
						|
    double innerTaily;
 | 
						|
    double tail_y;
 | 
						|
    struct bound innerx, outerx;
 | 
						|
    struct bound ellipsex;
 | 
						|
 | 
						|
    bound->ellipse.min = Dsin(def->a0) * def->h;
 | 
						|
    bound->ellipse.max = Dsin(def->a1) * def->h;
 | 
						|
    if (def->a0 == 45 && def->w == def->h)
 | 
						|
        ellipsex.min = bound->ellipse.min;
 | 
						|
    else
 | 
						|
        ellipsex.min = Dcos(def->a0) * def->w;
 | 
						|
    if (def->a1 == 45 && def->w == def->h)
 | 
						|
        ellipsex.max = bound->ellipse.max;
 | 
						|
    else
 | 
						|
        ellipsex.max = Dcos(def->a1) * def->w;
 | 
						|
    bound->outer.min = outerYfromXY(ellipsex.min, bound->ellipse.min, def, acc);
 | 
						|
    bound->outer.max = outerYfromXY(ellipsex.max, bound->ellipse.max, def, acc);
 | 
						|
    bound->inner.min = innerYfromXY(ellipsex.min, bound->ellipse.min, def, acc);
 | 
						|
    bound->inner.max = innerYfromXY(ellipsex.max, bound->ellipse.max, def, acc);
 | 
						|
 | 
						|
    outerx.min = outerXfromXY(ellipsex.min, bound->ellipse.min, def, acc);
 | 
						|
    outerx.max = outerXfromXY(ellipsex.max, bound->ellipse.max, def, acc);
 | 
						|
    innerx.min = innerXfromXY(ellipsex.min, bound->ellipse.min, def, acc);
 | 
						|
    innerx.max = innerXfromXY(ellipsex.max, bound->ellipse.max, def, acc);
 | 
						|
 | 
						|
    /*
 | 
						|
     * save the line end points for the
 | 
						|
     * cap code to use.  Careful here, these are
 | 
						|
     * in cartesean coordinates (y increasing upwards)
 | 
						|
     * while the cap code uses inverted coordinates
 | 
						|
     * (y increasing downwards)
 | 
						|
     */
 | 
						|
 | 
						|
    if (right) {
 | 
						|
        right->counterClock.y = bound->outer.min;
 | 
						|
        right->counterClock.x = outerx.min;
 | 
						|
        right->center.y = bound->ellipse.min;
 | 
						|
        right->center.x = ellipsex.min;
 | 
						|
        right->clock.y = bound->inner.min;
 | 
						|
        right->clock.x = innerx.min;
 | 
						|
    }
 | 
						|
 | 
						|
    if (left) {
 | 
						|
        left->clock.y = bound->outer.max;
 | 
						|
        left->clock.x = outerx.max;
 | 
						|
        left->center.y = bound->ellipse.max;
 | 
						|
        left->center.x = ellipsex.max;
 | 
						|
        left->counterClock.y = bound->inner.max;
 | 
						|
        left->counterClock.x = innerx.max;
 | 
						|
    }
 | 
						|
 | 
						|
    bound->left.min = bound->inner.max;
 | 
						|
    bound->left.max = bound->outer.max;
 | 
						|
    bound->right.min = bound->inner.min;
 | 
						|
    bound->right.max = bound->outer.min;
 | 
						|
 | 
						|
    computeLine(innerx.min, bound->inner.min, outerx.min, bound->outer.min,
 | 
						|
                &acc->right);
 | 
						|
    computeLine(innerx.max, bound->inner.max, outerx.max, bound->outer.max,
 | 
						|
                &acc->left);
 | 
						|
 | 
						|
    if (bound->inner.min > bound->inner.max) {
 | 
						|
        t = bound->inner.min;
 | 
						|
        bound->inner.min = bound->inner.max;
 | 
						|
        bound->inner.max = t;
 | 
						|
    }
 | 
						|
    tail_y = acc->tail_y;
 | 
						|
    if (tail_y > bound->ellipse.max)
 | 
						|
        tail_y = bound->ellipse.max;
 | 
						|
    else if (tail_y < bound->ellipse.min)
 | 
						|
        tail_y = bound->ellipse.min;
 | 
						|
    innerTaily = innerYfromY(tail_y, def, acc);
 | 
						|
    if (bound->inner.min > innerTaily)
 | 
						|
        bound->inner.min = innerTaily;
 | 
						|
    if (bound->inner.max < innerTaily)
 | 
						|
        bound->inner.max = innerTaily;
 | 
						|
    bound->inneri.min = ICEIL(bound->inner.min - acc->fromIntY);
 | 
						|
    bound->inneri.max = floor(bound->inner.max - acc->fromIntY);
 | 
						|
    bound->outeri.min = ICEIL(bound->outer.min - acc->fromIntY);
 | 
						|
    bound->outeri.max = floor(bound->outer.max - acc->fromIntY);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * this section computes the x value of the span at y
 | 
						|
 * intersected with the specified face of the ellipse.
 | 
						|
 *
 | 
						|
 * this is the min/max X value over the set of normal
 | 
						|
 * lines to the entire ellipse,  the equation of the
 | 
						|
 * normal lines is:
 | 
						|
 *
 | 
						|
 *     ellipse_x h^2                   h^2
 | 
						|
 * x = ------------ y + ellipse_x (1 - --- )
 | 
						|
 *     ellipse_y w^2                   w^2
 | 
						|
 *
 | 
						|
 * compute the derivative with-respect-to ellipse_y and solve
 | 
						|
 * for zero:
 | 
						|
 *
 | 
						|
 *       (w^2 - h^2) ellipse_y^3 + h^4 y
 | 
						|
 * 0 = - ----------------------------------
 | 
						|
 *       h w ellipse_y^2 sqrt (h^2 - ellipse_y^2)
 | 
						|
 *
 | 
						|
 *             (   h^4 y     )
 | 
						|
 * ellipse_y = ( ----------  ) ^ (1/3)
 | 
						|
 *             ( (h^2 - w^2) )
 | 
						|
 *
 | 
						|
 * The other two solutions to the equation are imaginary.
 | 
						|
 *
 | 
						|
 * This gives the position on the ellipse which generates
 | 
						|
 * the normal with the largest/smallest x intersection point.
 | 
						|
 *
 | 
						|
 * Now compute the second derivative to check whether
 | 
						|
 * the intersection is a minimum or maximum:
 | 
						|
 *
 | 
						|
 *    h (y0^3 (w^2 - h^2) + h^2 y (3y0^2 - 2h^2))
 | 
						|
 * -  -------------------------------------------
 | 
						|
 *          w y0^3 (sqrt (h^2 - y^2)) ^ 3
 | 
						|
 *
 | 
						|
 * as we only care about the sign,
 | 
						|
 *
 | 
						|
 * - (y0^3 (w^2 - h^2) + h^2 y (3y0^2 - 2h^2))
 | 
						|
 *
 | 
						|
 * or (to use accelerators),
 | 
						|
 *
 | 
						|
 * y0^3 (h^2 - w^2) - h^2 y (3y0^2 - 2h^2)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * computes the position on the ellipse whose normal line
 | 
						|
 * intersects the given scan line maximally
 | 
						|
 */
 | 
						|
 | 
						|
static double
 | 
						|
hookEllipseY(double scan_y,
 | 
						|
             struct arc_bound *bound, struct accelerators *acc, int left)
 | 
						|
{
 | 
						|
    double ret;
 | 
						|
 | 
						|
    if (acc->h2mw2 == 0) {
 | 
						|
        if ((scan_y > 0 && !left) || (scan_y < 0 && left))
 | 
						|
            return bound->ellipse.min;
 | 
						|
        return bound->ellipse.max;
 | 
						|
    }
 | 
						|
    ret = (acc->h4 * scan_y) / (acc->h2mw2);
 | 
						|
    if (ret >= 0)
 | 
						|
        return cbrt(ret);
 | 
						|
    else
 | 
						|
        return -cbrt(-ret);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * computes the X value of the intersection of the
 | 
						|
 * given scan line with the right side of the lower hook
 | 
						|
 */
 | 
						|
 | 
						|
static double
 | 
						|
hookX(double scan_y,
 | 
						|
      struct arc_def *def,
 | 
						|
      struct arc_bound *bound, struct accelerators *acc, int left)
 | 
						|
{
 | 
						|
    double ellipse_y, x;
 | 
						|
    double maxMin;
 | 
						|
 | 
						|
    if (def->w != def->h) {
 | 
						|
        ellipse_y = hookEllipseY(scan_y, bound, acc, left);
 | 
						|
        if (boundedLe(ellipse_y, bound->ellipse)) {
 | 
						|
            /*
 | 
						|
             * compute the value of the second
 | 
						|
             * derivative
 | 
						|
             */
 | 
						|
            maxMin = ellipse_y * ellipse_y * ellipse_y * acc->h2mw2 -
 | 
						|
                acc->h2 * scan_y * (3 * ellipse_y * ellipse_y - 2 * acc->h2);
 | 
						|
            if ((left && maxMin > 0) || (!left && maxMin < 0)) {
 | 
						|
                if (ellipse_y == 0)
 | 
						|
                    return def->w + left ? -def->l : def->l;
 | 
						|
                x = (acc->h2 * scan_y - ellipse_y * acc->h2mw2) *
 | 
						|
                    sqrt(acc->h2 - ellipse_y * ellipse_y) /
 | 
						|
                    (def->h * def->w * ellipse_y);
 | 
						|
                return x;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (left) {
 | 
						|
        if (acc->left.valid && boundedLe(scan_y, bound->left)) {
 | 
						|
            x = intersectLine(scan_y, acc->left);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            if (acc->right.valid)
 | 
						|
                x = intersectLine(scan_y, acc->right);
 | 
						|
            else
 | 
						|
                x = def->w - def->l;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (acc->right.valid && boundedLe(scan_y, bound->right)) {
 | 
						|
            x = intersectLine(scan_y, acc->right);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            if (acc->left.valid)
 | 
						|
                x = intersectLine(scan_y, acc->left);
 | 
						|
            else
 | 
						|
                x = def->w - def->l;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return x;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * generate the set of spans with
 | 
						|
 * the given y coordinate
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
arcSpan(int y,
 | 
						|
        int lx,
 | 
						|
        int lw,
 | 
						|
        int rx,
 | 
						|
        int rw,
 | 
						|
        struct arc_def *def,
 | 
						|
        struct arc_bound *bounds, struct accelerators *acc, int mask)
 | 
						|
{
 | 
						|
    int linx, loutx, rinx, routx;
 | 
						|
    double x, altx;
 | 
						|
 | 
						|
    if (boundedLe(y, bounds->inneri)) {
 | 
						|
        linx = -(lx + lw);
 | 
						|
        rinx = rx;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /*
 | 
						|
         * intersection with left face
 | 
						|
         */
 | 
						|
        x = hookX(y + acc->fromIntY, def, bounds, acc, 1);
 | 
						|
        if (acc->right.valid && boundedLe(y + acc->fromIntY, bounds->right)) {
 | 
						|
            altx = intersectLine(y + acc->fromIntY, acc->right);
 | 
						|
            if (altx < x)
 | 
						|
                x = altx;
 | 
						|
        }
 | 
						|
        linx = -ICEIL(acc->fromIntX - x);
 | 
						|
        rinx = ICEIL(acc->fromIntX + x);
 | 
						|
    }
 | 
						|
    if (boundedLe(y, bounds->outeri)) {
 | 
						|
        loutx = -lx;
 | 
						|
        routx = rx + rw;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        /*
 | 
						|
         * intersection with right face
 | 
						|
         */
 | 
						|
        x = hookX(y + acc->fromIntY, def, bounds, acc, 0);
 | 
						|
        if (acc->left.valid && boundedLe(y + acc->fromIntY, bounds->left)) {
 | 
						|
            altx = x;
 | 
						|
            x = intersectLine(y + acc->fromIntY, acc->left);
 | 
						|
            if (x < altx)
 | 
						|
                x = altx;
 | 
						|
        }
 | 
						|
        loutx = -ICEIL(acc->fromIntX - x);
 | 
						|
        routx = ICEIL(acc->fromIntX + x);
 | 
						|
    }
 | 
						|
    if (routx > rinx) {
 | 
						|
        if (mask & 1)
 | 
						|
            newFinalSpan(acc->yorgu - y, acc->xorg + rinx, acc->xorg + routx);
 | 
						|
        if (mask & 8)
 | 
						|
            newFinalSpan(acc->yorgl + y, acc->xorg + rinx, acc->xorg + routx);
 | 
						|
    }
 | 
						|
    if (loutx > linx) {
 | 
						|
        if (mask & 2)
 | 
						|
            newFinalSpan(acc->yorgu - y, acc->xorg - loutx, acc->xorg - linx);
 | 
						|
        if (mask & 4)
 | 
						|
            newFinalSpan(acc->yorgl + y, acc->xorg - loutx, acc->xorg - linx);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
arcSpan0(int lx,
 | 
						|
         int lw,
 | 
						|
         int rx,
 | 
						|
         int rw,
 | 
						|
         struct arc_def *def,
 | 
						|
         struct arc_bound *bounds, struct accelerators *acc, int mask)
 | 
						|
{
 | 
						|
    double x;
 | 
						|
 | 
						|
    if (boundedLe(0, bounds->inneri) &&
 | 
						|
        acc->left.valid && boundedLe(0, bounds->left) && acc->left.b > 0) {
 | 
						|
        x = def->w - def->l;
 | 
						|
        if (acc->left.b < x)
 | 
						|
            x = acc->left.b;
 | 
						|
        lw = ICEIL(acc->fromIntX - x) - lx;
 | 
						|
        rw += rx;
 | 
						|
        rx = ICEIL(acc->fromIntX + x);
 | 
						|
        rw -= rx;
 | 
						|
    }
 | 
						|
    arcSpan(0, lx, lw, rx, rw, def, bounds, acc, mask);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
tailSpan(int y,
 | 
						|
         int lw,
 | 
						|
         int rw,
 | 
						|
         struct arc_def *def,
 | 
						|
         struct arc_bound *bounds, struct accelerators *acc, int mask)
 | 
						|
{
 | 
						|
    double yy, xalt, x, lx, rx;
 | 
						|
    int n;
 | 
						|
 | 
						|
    if (boundedLe(y, bounds->outeri))
 | 
						|
        arcSpan(y, 0, lw, -rw, rw, def, bounds, acc, mask);
 | 
						|
    else if (def->w != def->h) {
 | 
						|
        yy = y + acc->fromIntY;
 | 
						|
        x = tailX(yy, def, bounds, acc);
 | 
						|
        if (yy == 0.0 && x == -rw - acc->fromIntX)
 | 
						|
            return;
 | 
						|
        if (acc->right.valid && boundedLe(yy, bounds->right)) {
 | 
						|
            rx = x;
 | 
						|
            lx = -x;
 | 
						|
            xalt = intersectLine(yy, acc->right);
 | 
						|
            if (xalt >= -rw - acc->fromIntX && xalt <= rx)
 | 
						|
                rx = xalt;
 | 
						|
            n = ICEIL(acc->fromIntX + lx);
 | 
						|
            if (lw > n) {
 | 
						|
                if (mask & 2)
 | 
						|
                    newFinalSpan(acc->yorgu - y, acc->xorg + n, acc->xorg + lw);
 | 
						|
                if (mask & 4)
 | 
						|
                    newFinalSpan(acc->yorgl + y, acc->xorg + n, acc->xorg + lw);
 | 
						|
            }
 | 
						|
            n = ICEIL(acc->fromIntX + rx);
 | 
						|
            if (n > -rw) {
 | 
						|
                if (mask & 1)
 | 
						|
                    newFinalSpan(acc->yorgu - y, acc->xorg - rw, acc->xorg + n);
 | 
						|
                if (mask & 8)
 | 
						|
                    newFinalSpan(acc->yorgl + y, acc->xorg - rw, acc->xorg + n);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        arcSpan(y,
 | 
						|
                ICEIL(acc->fromIntX - x), 0,
 | 
						|
                ICEIL(acc->fromIntX + x), 0, def, bounds, acc, mask);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * create whole arcs out of pieces.  This code is
 | 
						|
 * very bad.
 | 
						|
 */
 | 
						|
 | 
						|
static struct finalSpan **finalSpans = NULL;
 | 
						|
static int finalMiny = 0, finalMaxy = -1;
 | 
						|
static int finalSize = 0;
 | 
						|
 | 
						|
static int nspans = 0;          /* total spans, not just y coords */
 | 
						|
 | 
						|
struct finalSpan {
 | 
						|
    struct finalSpan *next;
 | 
						|
    int min, max;               /* x values */
 | 
						|
};
 | 
						|
 | 
						|
static struct finalSpan *freeFinalSpans, *tmpFinalSpan;
 | 
						|
 | 
						|
#define allocFinalSpan()   (freeFinalSpans ?\
 | 
						|
				((tmpFinalSpan = freeFinalSpans), \
 | 
						|
				 (freeFinalSpans = freeFinalSpans->next), \
 | 
						|
				 (tmpFinalSpan->next = 0), \
 | 
						|
				 tmpFinalSpan) : \
 | 
						|
			     realAllocSpan ())
 | 
						|
 | 
						|
#define SPAN_CHUNK_SIZE    128
 | 
						|
 | 
						|
struct finalSpanChunk {
 | 
						|
    struct finalSpan data[SPAN_CHUNK_SIZE];
 | 
						|
    struct finalSpanChunk *next;
 | 
						|
};
 | 
						|
 | 
						|
static struct finalSpanChunk *chunks;
 | 
						|
 | 
						|
static struct finalSpan *
 | 
						|
realAllocSpan(void)
 | 
						|
{
 | 
						|
    struct finalSpan *span;
 | 
						|
    int i;
 | 
						|
 | 
						|
    struct finalSpanChunk *newChunk = calloc(1, sizeof(struct finalSpanChunk));
 | 
						|
    if (!newChunk)
 | 
						|
        return (struct finalSpan *) NULL;
 | 
						|
    newChunk->next = chunks;
 | 
						|
    chunks = newChunk;
 | 
						|
    freeFinalSpans = span = newChunk->data + 1;
 | 
						|
    for (i = 1; i < SPAN_CHUNK_SIZE - 1; i++) {
 | 
						|
        span->next = span + 1;
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    span->next = 0;
 | 
						|
    span = newChunk->data;
 | 
						|
    span->next = 0;
 | 
						|
    return span;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
disposeFinalSpans(void)
 | 
						|
{
 | 
						|
    struct finalSpanChunk *chunk, *next;
 | 
						|
 | 
						|
    for (chunk = chunks; chunk; chunk = next) {
 | 
						|
        next = chunk->next;
 | 
						|
        free(chunk);
 | 
						|
    }
 | 
						|
    chunks = 0;
 | 
						|
    freeFinalSpans = 0;
 | 
						|
    free(finalSpans);
 | 
						|
    finalSpans = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
fillSpans(DrawablePtr pDrawable, GCPtr pGC)
 | 
						|
{
 | 
						|
    struct finalSpan *span;
 | 
						|
    DDXPointPtr xSpan;
 | 
						|
    int *xWidth;
 | 
						|
    int i;
 | 
						|
    struct finalSpan **f;
 | 
						|
    int spany;
 | 
						|
    DDXPointPtr xSpans;
 | 
						|
    int *xWidths;
 | 
						|
 | 
						|
    if (nspans == 0)
 | 
						|
        return;
 | 
						|
    xSpan = xSpans = calloc(nspans, sizeof(DDXPointRec));
 | 
						|
    xWidth = xWidths = calloc(nspans, sizeof(int));
 | 
						|
    if (xSpans && xWidths) {
 | 
						|
        i = 0;
 | 
						|
        f = finalSpans;
 | 
						|
        for (spany = finalMiny; spany <= finalMaxy; spany++, f++) {
 | 
						|
            for (span = *f; span; span = span->next) {
 | 
						|
                if (span->max <= span->min)
 | 
						|
                    continue;
 | 
						|
                xSpan->x = span->min;
 | 
						|
                xSpan->y = spany;
 | 
						|
                ++xSpan;
 | 
						|
                *xWidth++ = span->max - span->min;
 | 
						|
                ++i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        (*pGC->ops->FillSpans) (pDrawable, pGC, i, xSpans, xWidths, TRUE);
 | 
						|
    }
 | 
						|
    disposeFinalSpans();
 | 
						|
    free(xSpans);
 | 
						|
    free(xWidths);
 | 
						|
    finalMiny = 0;
 | 
						|
    finalMaxy = -1;
 | 
						|
    finalSize = 0;
 | 
						|
    nspans = 0;
 | 
						|
}
 | 
						|
 | 
						|
#define SPAN_REALLOC	100
 | 
						|
 | 
						|
#define findSpan(y) ((finalMiny <= (y) && (y) <= finalMaxy) ? \
 | 
						|
			  &finalSpans[(y) - finalMiny] : \
 | 
						|
			  realFindSpan (y))
 | 
						|
 | 
						|
static struct finalSpan **
 | 
						|
realFindSpan(int y)
 | 
						|
{
 | 
						|
    struct finalSpan **newSpans;
 | 
						|
    int newSize, newMiny, newMaxy;
 | 
						|
    int change;
 | 
						|
    int i;
 | 
						|
 | 
						|
    if (y < finalMiny || y > finalMaxy) {
 | 
						|
        if (!finalSize) {
 | 
						|
            finalMiny = y;
 | 
						|
            finalMaxy = y - 1;
 | 
						|
        }
 | 
						|
        if (y < finalMiny)
 | 
						|
            change = finalMiny - y;
 | 
						|
        else
 | 
						|
            change = y - finalMaxy;
 | 
						|
        if (change >= SPAN_REALLOC)
 | 
						|
            change += SPAN_REALLOC;
 | 
						|
        else
 | 
						|
            change = SPAN_REALLOC;
 | 
						|
        newSize = finalSize + change;
 | 
						|
        newSpans = calloc(newSize, sizeof(struct finalSpan *));
 | 
						|
        if (!newSpans)
 | 
						|
            return NULL;
 | 
						|
        newMiny = finalMiny;
 | 
						|
        newMaxy = finalMaxy;
 | 
						|
        if (y < finalMiny)
 | 
						|
            newMiny = finalMiny - change;
 | 
						|
        else
 | 
						|
            newMaxy = finalMaxy + change;
 | 
						|
        if (finalSpans) {
 | 
						|
            memcpy(((char *) newSpans) +
 | 
						|
                    (finalMiny - newMiny) * sizeof(struct finalSpan *),
 | 
						|
                   finalSpans,
 | 
						|
                   finalSize * sizeof(struct finalSpan *));
 | 
						|
            free(finalSpans);
 | 
						|
        }
 | 
						|
        if ((i = finalMiny - newMiny) > 0)
 | 
						|
            memset((char *) newSpans, 0, i * sizeof(struct finalSpan *));
 | 
						|
        if ((i = newMaxy - finalMaxy) > 0)
 | 
						|
            memset((char *) (newSpans + newSize - i), 0,
 | 
						|
                   i * sizeof(struct finalSpan *));
 | 
						|
        finalSpans = newSpans;
 | 
						|
        finalMaxy = newMaxy;
 | 
						|
        finalMiny = newMiny;
 | 
						|
        finalSize = newSize;
 | 
						|
    }
 | 
						|
    return &finalSpans[y - finalMiny];
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
newFinalSpan(int y, int xmin, int xmax)
 | 
						|
{
 | 
						|
    struct finalSpan *x;
 | 
						|
    struct finalSpan **f;
 | 
						|
    struct finalSpan *oldx;
 | 
						|
    struct finalSpan *prev;
 | 
						|
 | 
						|
    f = findSpan(y);
 | 
						|
    if (!f)
 | 
						|
        return;
 | 
						|
    oldx = 0;
 | 
						|
    for (;;) {
 | 
						|
        prev = 0;
 | 
						|
        for (x = *f; x; x = x->next) {
 | 
						|
            if (x == oldx) {
 | 
						|
                prev = x;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            if (x->min <= xmax && xmin <= x->max) {
 | 
						|
                if (oldx) {
 | 
						|
                    oldx->min = min(x->min, xmin);
 | 
						|
                    oldx->max = max(x->max, xmax);
 | 
						|
                    if (prev)
 | 
						|
                        prev->next = x->next;
 | 
						|
                    else
 | 
						|
                        *f = x->next;
 | 
						|
                    --nspans;
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    x->min = min(x->min, xmin);
 | 
						|
                    x->max = max(x->max, xmax);
 | 
						|
                    oldx = x;
 | 
						|
                }
 | 
						|
                xmin = oldx->min;
 | 
						|
                xmax = oldx->max;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            prev = x;
 | 
						|
        }
 | 
						|
        if (!x)
 | 
						|
            break;
 | 
						|
    }
 | 
						|
    if (!oldx) {
 | 
						|
        x = allocFinalSpan();
 | 
						|
        if (x) {
 | 
						|
            x->min = xmin;
 | 
						|
            x->max = xmax;
 | 
						|
            x->next = *f;
 | 
						|
            *f = x;
 | 
						|
            ++nspans;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
mirrorSppPoint(int quadrant, SppPointPtr sppPoint)
 | 
						|
{
 | 
						|
    switch (quadrant) {
 | 
						|
    case 0:
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        sppPoint->x = -sppPoint->x;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        sppPoint->x = -sppPoint->x;
 | 
						|
        sppPoint->y = -sppPoint->y;
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        sppPoint->y = -sppPoint->y;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * and translate to X coordinate system
 | 
						|
     */
 | 
						|
    sppPoint->y = -sppPoint->y;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * split an arc into pieces which are scan-converted
 | 
						|
 * in the first-quadrant and mirrored into position.
 | 
						|
 * This is necessary as the scan-conversion code can
 | 
						|
 * only deal with arcs completely contained in the
 | 
						|
 * first quadrant.
 | 
						|
 */
 | 
						|
 | 
						|
static miArcSpanData *
 | 
						|
drawArc(xArc * tarc, int l, int a0, int a1, miArcFacePtr right,
 | 
						|
        miArcFacePtr left, miArcSpanData *spdata)
 | 
						|
{                               /* save end line points */
 | 
						|
    struct arc_def def;
 | 
						|
    struct accelerators acc;
 | 
						|
    int startq, endq, curq;
 | 
						|
    int rightq, leftq = 0, righta = 0, lefta = 0;
 | 
						|
    miArcFacePtr passRight, passLeft;
 | 
						|
    int q0 = 0, q1 = 0, mask;
 | 
						|
    struct band {
 | 
						|
        int a0, a1;
 | 
						|
        int mask;
 | 
						|
    } band[5], sweep[20];
 | 
						|
    int bandno, sweepno;
 | 
						|
    int i, j;
 | 
						|
    int flipRight = 0, flipLeft = 0;
 | 
						|
    int copyEnd = 0;
 | 
						|
 | 
						|
    if (!spdata)
 | 
						|
        spdata = miComputeWideEllipse(l, tarc);
 | 
						|
    if (!spdata)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    if (a1 < a0)
 | 
						|
        a1 += 360 * 64;
 | 
						|
    startq = a0 / (90 * 64);
 | 
						|
    if (a0 == a1)
 | 
						|
        endq = startq;
 | 
						|
    else
 | 
						|
        endq = (a1 - 1) / (90 * 64);
 | 
						|
    bandno = 0;
 | 
						|
    curq = startq;
 | 
						|
    rightq = -1;
 | 
						|
    for (;;) {
 | 
						|
        switch (curq) {
 | 
						|
        case 0:
 | 
						|
            if (a0 > 90 * 64)
 | 
						|
                q0 = 0;
 | 
						|
            else
 | 
						|
                q0 = a0;
 | 
						|
            if (a1 < 360 * 64)
 | 
						|
                q1 = min(a1, 90 * 64);
 | 
						|
            else
 | 
						|
                q1 = 90 * 64;
 | 
						|
            if (curq == startq && a0 == q0 && rightq < 0) {
 | 
						|
                righta = q0;
 | 
						|
                rightq = curq;
 | 
						|
            }
 | 
						|
            if (curq == endq && a1 == q1) {
 | 
						|
                lefta = q1;
 | 
						|
                leftq = curq;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
            if (a1 < 90 * 64)
 | 
						|
                q0 = 0;
 | 
						|
            else
 | 
						|
                q0 = 180 * 64 - min(a1, 180 * 64);
 | 
						|
            if (a0 > 180 * 64)
 | 
						|
                q1 = 90 * 64;
 | 
						|
            else
 | 
						|
                q1 = 180 * 64 - max(a0, 90 * 64);
 | 
						|
            if (curq == startq && 180 * 64 - a0 == q1) {
 | 
						|
                righta = q1;
 | 
						|
                rightq = curq;
 | 
						|
            }
 | 
						|
            if (curq == endq && 180 * 64 - a1 == q0) {
 | 
						|
                lefta = q0;
 | 
						|
                leftq = curq;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            if (a0 > 270 * 64)
 | 
						|
                q0 = 0;
 | 
						|
            else
 | 
						|
                q0 = max(a0, 180 * 64) - 180 * 64;
 | 
						|
            if (a1 < 180 * 64)
 | 
						|
                q1 = 90 * 64;
 | 
						|
            else
 | 
						|
                q1 = min(a1, 270 * 64) - 180 * 64;
 | 
						|
            if (curq == startq && a0 - 180 * 64 == q0) {
 | 
						|
                righta = q0;
 | 
						|
                rightq = curq;
 | 
						|
            }
 | 
						|
            if (curq == endq && a1 - 180 * 64 == q1) {
 | 
						|
                lefta = q1;
 | 
						|
                leftq = curq;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 3:
 | 
						|
            if (a1 < 270 * 64)
 | 
						|
                q0 = 0;
 | 
						|
            else
 | 
						|
                q0 = 360 * 64 - min(a1, 360 * 64);
 | 
						|
            q1 = 360 * 64 - max(a0, 270 * 64);
 | 
						|
            if (curq == startq && 360 * 64 - a0 == q1) {
 | 
						|
                righta = q1;
 | 
						|
                rightq = curq;
 | 
						|
            }
 | 
						|
            if (curq == endq && 360 * 64 - a1 == q0) {
 | 
						|
                lefta = q0;
 | 
						|
                leftq = curq;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        band[bandno].a0 = q0;
 | 
						|
        band[bandno].a1 = q1;
 | 
						|
        band[bandno].mask = 1 << curq;
 | 
						|
        bandno++;
 | 
						|
        if (curq == endq)
 | 
						|
            break;
 | 
						|
        curq++;
 | 
						|
        if (curq == 4) {
 | 
						|
            a0 = 0;
 | 
						|
            a1 -= 360 * 64;
 | 
						|
            curq = 0;
 | 
						|
            endq -= 4;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    sweepno = 0;
 | 
						|
    for (;;) {
 | 
						|
        q0 = 90 * 64;
 | 
						|
        mask = 0;
 | 
						|
        /*
 | 
						|
         * find left-most point
 | 
						|
         */
 | 
						|
        for (i = 0; i < bandno; i++)
 | 
						|
            if (band[i].a0 <= q0) {
 | 
						|
                q0 = band[i].a0;
 | 
						|
                q1 = band[i].a1;
 | 
						|
                mask = band[i].mask;
 | 
						|
            }
 | 
						|
        if (!mask)
 | 
						|
            break;
 | 
						|
        /*
 | 
						|
         * locate next point of change
 | 
						|
         */
 | 
						|
        for (i = 0; i < bandno; i++)
 | 
						|
            if (!(mask & band[i].mask)) {
 | 
						|
                if (band[i].a0 == q0) {
 | 
						|
                    if (band[i].a1 < q1)
 | 
						|
                        q1 = band[i].a1;
 | 
						|
                    mask |= band[i].mask;
 | 
						|
                }
 | 
						|
                else if (band[i].a0 < q1)
 | 
						|
                    q1 = band[i].a0;
 | 
						|
            }
 | 
						|
        /*
 | 
						|
         * create a new sweep
 | 
						|
         */
 | 
						|
        sweep[sweepno].a0 = q0;
 | 
						|
        sweep[sweepno].a1 = q1;
 | 
						|
        sweep[sweepno].mask = mask;
 | 
						|
        sweepno++;
 | 
						|
        /*
 | 
						|
         * subtract the sweep from the affected bands
 | 
						|
         */
 | 
						|
        for (i = 0; i < bandno; i++)
 | 
						|
            if (band[i].a0 == q0) {
 | 
						|
                band[i].a0 = q1;
 | 
						|
                /*
 | 
						|
                 * check if this band is empty
 | 
						|
                 */
 | 
						|
                if (band[i].a0 == band[i].a1)
 | 
						|
                    band[i].a1 = band[i].a0 = 90 * 64 + 1;
 | 
						|
            }
 | 
						|
    }
 | 
						|
    computeAcc(tarc, l, &def, &acc);
 | 
						|
    for (j = 0; j < sweepno; j++) {
 | 
						|
        mask = sweep[j].mask;
 | 
						|
        passRight = passLeft = 0;
 | 
						|
        if (mask & (1 << rightq)) {
 | 
						|
            if (sweep[j].a0 == righta)
 | 
						|
                passRight = right;
 | 
						|
            else if (sweep[j].a1 == righta) {
 | 
						|
                passLeft = right;
 | 
						|
                flipRight = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (mask & (1 << leftq)) {
 | 
						|
            if (sweep[j].a1 == lefta) {
 | 
						|
                if (passLeft)
 | 
						|
                    copyEnd = 1;
 | 
						|
                passLeft = left;
 | 
						|
            }
 | 
						|
            else if (sweep[j].a0 == lefta) {
 | 
						|
                if (passRight)
 | 
						|
                    copyEnd = 1;
 | 
						|
                passRight = left;
 | 
						|
                flipLeft = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        drawQuadrant(&def, &acc, sweep[j].a0, sweep[j].a1, mask,
 | 
						|
                     passRight, passLeft, spdata);
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * when copyEnd is set, both ends of the arc were computed
 | 
						|
     * at the same time; drawQuadrant only takes one end though,
 | 
						|
     * so the left end will be the only one holding the data.  Copy
 | 
						|
     * it from there.
 | 
						|
     */
 | 
						|
    if (copyEnd)
 | 
						|
        *right = *left;
 | 
						|
    /*
 | 
						|
     * mirror the coordinates generated for the
 | 
						|
     * faces of the arc
 | 
						|
     */
 | 
						|
    if (right) {
 | 
						|
        mirrorSppPoint(rightq, &right->clock);
 | 
						|
        mirrorSppPoint(rightq, &right->center);
 | 
						|
        mirrorSppPoint(rightq, &right->counterClock);
 | 
						|
        if (flipRight) {
 | 
						|
            SppPointRec temp;
 | 
						|
 | 
						|
            temp = right->clock;
 | 
						|
            right->clock = right->counterClock;
 | 
						|
            right->counterClock = temp;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (left) {
 | 
						|
        mirrorSppPoint(leftq, &left->counterClock);
 | 
						|
        mirrorSppPoint(leftq, &left->center);
 | 
						|
        mirrorSppPoint(leftq, &left->clock);
 | 
						|
        if (flipLeft) {
 | 
						|
            SppPointRec temp;
 | 
						|
 | 
						|
            temp = left->clock;
 | 
						|
            left->clock = left->counterClock;
 | 
						|
            left->counterClock = temp;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return spdata;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
drawQuadrant(struct arc_def *def,
 | 
						|
             struct accelerators *acc,
 | 
						|
             int a0,
 | 
						|
             int a1,
 | 
						|
             int mask,
 | 
						|
             miArcFacePtr right, miArcFacePtr left, miArcSpanData * spdata)
 | 
						|
{
 | 
						|
    struct arc_bound bound;
 | 
						|
    double yy, x, xalt;
 | 
						|
    int y, miny, maxy;
 | 
						|
    int n;
 | 
						|
    miArcSpan *span;
 | 
						|
 | 
						|
    def->a0 = ((double) a0) / 64.0;
 | 
						|
    def->a1 = ((double) a1) / 64.0;
 | 
						|
    computeBound(def, &bound, acc, right, left);
 | 
						|
    yy = bound.inner.min;
 | 
						|
    if (bound.outer.min < yy)
 | 
						|
        yy = bound.outer.min;
 | 
						|
    miny = ICEIL(yy - acc->fromIntY);
 | 
						|
    yy = bound.inner.max;
 | 
						|
    if (bound.outer.max > yy)
 | 
						|
        yy = bound.outer.max;
 | 
						|
    maxy = floor(yy - acc->fromIntY);
 | 
						|
    y = spdata->k;
 | 
						|
    span = spdata->spans;
 | 
						|
    if (spdata->top) {
 | 
						|
        if (a1 == 90 * 64 && (mask & 1))
 | 
						|
            newFinalSpan(acc->yorgu - y - 1, acc->xorg, acc->xorg + 1);
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    for (n = spdata->count1; --n >= 0;) {
 | 
						|
        if (y < miny)
 | 
						|
            return;
 | 
						|
        if (y <= maxy) {
 | 
						|
            arcSpan(y,
 | 
						|
                    span->lx, -span->lx, 0, span->lx + span->lw,
 | 
						|
                    def, &bound, acc, mask);
 | 
						|
            if (span->rw + span->rx)
 | 
						|
                tailSpan(y, -span->rw, -span->rx, def, &bound, acc, mask);
 | 
						|
        }
 | 
						|
        y--;
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    if (y < miny)
 | 
						|
        return;
 | 
						|
    if (spdata->hole) {
 | 
						|
        if (y <= maxy)
 | 
						|
            arcSpan(y, 0, 0, 0, 1, def, &bound, acc, mask & 0xc);
 | 
						|
    }
 | 
						|
    for (n = spdata->count2; --n >= 0;) {
 | 
						|
        if (y < miny)
 | 
						|
            return;
 | 
						|
        if (y <= maxy)
 | 
						|
            arcSpan(y, span->lx, span->lw, span->rx, span->rw,
 | 
						|
                    def, &bound, acc, mask);
 | 
						|
        y--;
 | 
						|
        span++;
 | 
						|
    }
 | 
						|
    if (spdata->bot && miny <= y && y <= maxy) {
 | 
						|
        n = mask;
 | 
						|
        if (y == miny)
 | 
						|
            n &= 0xc;
 | 
						|
        if (span->rw <= 0) {
 | 
						|
            arcSpan0(span->lx, -span->lx, 0, span->lx + span->lw,
 | 
						|
                     def, &bound, acc, n);
 | 
						|
            if (span->rw + span->rx)
 | 
						|
                tailSpan(y, -span->rw, -span->rx, def, &bound, acc, n);
 | 
						|
        }
 | 
						|
        else
 | 
						|
            arcSpan0(span->lx, span->lw, span->rx, span->rw,
 | 
						|
                     def, &bound, acc, n);
 | 
						|
        y--;
 | 
						|
    }
 | 
						|
    while (y >= miny) {
 | 
						|
        yy = y + acc->fromIntY;
 | 
						|
        if (def->w == def->h) {
 | 
						|
            xalt = def->w - def->l;
 | 
						|
            x = -sqrt(xalt * xalt - yy * yy);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            x = tailX(yy, def, &bound, acc);
 | 
						|
            if (acc->left.valid && boundedLe(yy, bound.left)) {
 | 
						|
                xalt = intersectLine(yy, acc->left);
 | 
						|
                if (xalt < x)
 | 
						|
                    x = xalt;
 | 
						|
            }
 | 
						|
            if (acc->right.valid && boundedLe(yy, bound.right)) {
 | 
						|
                xalt = intersectLine(yy, acc->right);
 | 
						|
                if (xalt < x)
 | 
						|
                    x = xalt;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        arcSpan(y,
 | 
						|
                ICEIL(acc->fromIntX - x), 0,
 | 
						|
                ICEIL(acc->fromIntX + x), 0, def, &bound, acc, mask);
 | 
						|
        y--;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
miPolyArc(DrawablePtr pDraw, GCPtr pGC, int narcs, xArc * parcs)
 | 
						|
{
 | 
						|
    if (pGC->lineWidth == 0)
 | 
						|
        miZeroPolyArc(pDraw, pGC, narcs, parcs);
 | 
						|
    else
 | 
						|
        miWideArc(pDraw, pGC, narcs, parcs);
 | 
						|
}
 |