723 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			723 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
/***********************************************************
 | 
						|
 | 
						|
Copyright 1987, 1998  The Open Group
 | 
						|
 | 
						|
Permission to use, copy, modify, distribute, and sell this software and its
 | 
						|
documentation for any purpose is hereby granted without fee, provided that
 | 
						|
the above copyright notice appear in all copies and that both that
 | 
						|
copyright notice and this permission notice appear in supporting
 | 
						|
documentation.
 | 
						|
 | 
						|
The above copyright notice and this permission notice shall be included in
 | 
						|
all copies or substantial portions of the Software.
 | 
						|
 | 
						|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 | 
						|
OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 | 
						|
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | 
						|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | 
						|
 | 
						|
Except as contained in this notice, the name of The Open Group shall not be
 | 
						|
used in advertising or otherwise to promote the sale, use or other dealings
 | 
						|
in this Software without prior written authorization from The Open Group.
 | 
						|
 | 
						|
Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.
 | 
						|
 | 
						|
                        All Rights Reserved
 | 
						|
 | 
						|
Permission to use, copy, modify, and distribute this software and its
 | 
						|
documentation for any purpose and without fee is hereby granted,
 | 
						|
provided that the above copyright notice appear in all copies and that
 | 
						|
both that copyright notice and this permission notice appear in
 | 
						|
supporting documentation, and that the name of Digital not be
 | 
						|
used in advertising or publicity pertaining to distribution of the
 | 
						|
software without specific, written prior permission.
 | 
						|
 | 
						|
DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
 | 
						|
ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
 | 
						|
DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
 | 
						|
ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
 | 
						|
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | 
						|
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
 | 
						|
SOFTWARE.
 | 
						|
 | 
						|
******************************************************************/
 | 
						|
/*
 | 
						|
 *  mipoly.c
 | 
						|
 *
 | 
						|
 *  Written by Brian Kelleher; June 1986
 | 
						|
 */
 | 
						|
#ifdef HAVE_DIX_CONFIG_H
 | 
						|
#include <dix-config.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <X11/X.h>
 | 
						|
#include "windowstr.h"
 | 
						|
#include "gcstruct.h"
 | 
						|
#include "pixmapstr.h"
 | 
						|
#include "mi.h"
 | 
						|
#include "miscanfill.h"
 | 
						|
#include "mipoly.h"
 | 
						|
#include "regionstr.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Insert the given edge into the edge table.  First we must find the correct
 | 
						|
 * bucket in the Edge table, then find the right slot in the bucket.  Finally,
 | 
						|
 * we can insert it.
 | 
						|
 */
 | 
						|
static Bool
 | 
						|
miInsertEdgeInET(EdgeTable * ET, EdgeTableEntry * ETE, int scanline,
 | 
						|
                 ScanLineListBlock ** SLLBlock, int *iSLLBlock)
 | 
						|
{
 | 
						|
    EdgeTableEntry *start, *prev;
 | 
						|
    ScanLineList *pSLL, *pPrevSLL;
 | 
						|
    ScanLineListBlock *tmpSLLBlock;
 | 
						|
 | 
						|
    /*
 | 
						|
     * find the right bucket to put the edge into
 | 
						|
     */
 | 
						|
    pPrevSLL = &ET->scanlines;
 | 
						|
    pSLL = pPrevSLL->next;
 | 
						|
    while (pSLL && (pSLL->scanline < scanline)) {
 | 
						|
        pPrevSLL = pSLL;
 | 
						|
        pSLL = pSLL->next;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * reassign pSLL (pointer to ScanLineList) if necessary
 | 
						|
     */
 | 
						|
    if ((!pSLL) || (pSLL->scanline > scanline)) {
 | 
						|
        if (*iSLLBlock > SLLSPERBLOCK - 1) {
 | 
						|
            tmpSLLBlock = malloc(sizeof(ScanLineListBlock));
 | 
						|
            if (!tmpSLLBlock)
 | 
						|
                return FALSE;
 | 
						|
            (*SLLBlock)->next = tmpSLLBlock;
 | 
						|
            tmpSLLBlock->next = NULL;
 | 
						|
            *SLLBlock = tmpSLLBlock;
 | 
						|
            *iSLLBlock = 0;
 | 
						|
        }
 | 
						|
        pSLL = &((*SLLBlock)->SLLs[(*iSLLBlock)++]);
 | 
						|
 | 
						|
        pSLL->next = pPrevSLL->next;
 | 
						|
        pSLL->edgelist = NULL;
 | 
						|
        pPrevSLL->next = pSLL;
 | 
						|
    }
 | 
						|
    pSLL->scanline = scanline;
 | 
						|
 | 
						|
    /*
 | 
						|
     * now insert the edge in the right bucket
 | 
						|
     */
 | 
						|
    prev = NULL;
 | 
						|
    start = pSLL->edgelist;
 | 
						|
    while (start && (start->bres.minor < ETE->bres.minor)) {
 | 
						|
        prev = start;
 | 
						|
        start = start->next;
 | 
						|
    }
 | 
						|
    ETE->next = start;
 | 
						|
 | 
						|
    if (prev)
 | 
						|
        prev->next = ETE;
 | 
						|
    else
 | 
						|
        pSLL->edgelist = ETE;
 | 
						|
    return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
miFreeStorage(ScanLineListBlock * pSLLBlock)
 | 
						|
{
 | 
						|
    ScanLineListBlock *tmpSLLBlock;
 | 
						|
 | 
						|
    while (pSLLBlock) {
 | 
						|
        tmpSLLBlock = pSLLBlock->next;
 | 
						|
        free(pSLLBlock);
 | 
						|
        pSLLBlock = tmpSLLBlock;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * CreateEdgeTable
 | 
						|
 *
 | 
						|
 * This routine creates the edge table for scan converting polygons.
 | 
						|
 * The Edge Table (ET) looks like:
 | 
						|
 *
 | 
						|
 * EdgeTable
 | 
						|
 *  --------
 | 
						|
 * |  ymax  |        ScanLineLists
 | 
						|
 * |scanline|-->------------>-------------->...
 | 
						|
 *  --------   |scanline|   |scanline|
 | 
						|
 *             |edgelist|   |edgelist|
 | 
						|
 *             ---------    ---------
 | 
						|
 *                 |             |
 | 
						|
 *                 |             |
 | 
						|
 *                 V             V
 | 
						|
 *           list of ETEs   list of ETEs
 | 
						|
 *
 | 
						|
 * where ETE is an EdgeTableEntry data structure, and there is one ScanLineList
 | 
						|
 * per scanline at which an edge is initially entered.
 | 
						|
 */
 | 
						|
 | 
						|
static Bool
 | 
						|
miCreateETandAET(int count, DDXPointPtr pts, EdgeTable * ET,
 | 
						|
                 EdgeTableEntry * AET, EdgeTableEntry * pETEs,
 | 
						|
                 ScanLineListBlock * pSLLBlock)
 | 
						|
{
 | 
						|
    DDXPointPtr top, bottom;
 | 
						|
    DDXPointPtr PrevPt, CurrPt;
 | 
						|
    int iSLLBlock = 0;
 | 
						|
 | 
						|
    int dy;
 | 
						|
 | 
						|
    if (count < 2)
 | 
						|
        return TRUE;
 | 
						|
 | 
						|
    /*
 | 
						|
     *  initialize the Active Edge Table
 | 
						|
     */
 | 
						|
    AET->next = NULL;
 | 
						|
    AET->back = NULL;
 | 
						|
    AET->nextWETE = NULL;
 | 
						|
    AET->bres.minor = MININT;
 | 
						|
 | 
						|
    /*
 | 
						|
     *  initialize the Edge Table.
 | 
						|
     */
 | 
						|
    ET->scanlines.next = NULL;
 | 
						|
    ET->ymax = MININT;
 | 
						|
    ET->ymin = MAXINT;
 | 
						|
    pSLLBlock->next = NULL;
 | 
						|
 | 
						|
    PrevPt = &pts[count - 1];
 | 
						|
 | 
						|
    /*
 | 
						|
     *  for each vertex in the array of points.
 | 
						|
     *  In this loop we are dealing with two vertices at
 | 
						|
     *  a time -- these make up one edge of the polygon.
 | 
						|
     */
 | 
						|
    while (count--) {
 | 
						|
        CurrPt = pts++;
 | 
						|
 | 
						|
        /*
 | 
						|
         *  find out which point is above and which is below.
 | 
						|
         */
 | 
						|
        if (PrevPt->y > CurrPt->y) {
 | 
						|
            bottom = PrevPt, top = CurrPt;
 | 
						|
            pETEs->ClockWise = 0;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            bottom = CurrPt, top = PrevPt;
 | 
						|
            pETEs->ClockWise = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * don't add horizontal edges to the Edge table.
 | 
						|
         */
 | 
						|
        if (bottom->y != top->y) {
 | 
						|
            pETEs->ymax = bottom->y - 1; /* -1 so we don't get last scanline */
 | 
						|
 | 
						|
            /*
 | 
						|
             *  initialize integer edge algorithm
 | 
						|
             */
 | 
						|
            dy = bottom->y - top->y;
 | 
						|
            BRESINITPGONSTRUCT(dy, top->x, bottom->x, pETEs->bres);
 | 
						|
 | 
						|
            if (!miInsertEdgeInET(ET, pETEs, top->y, &pSLLBlock, &iSLLBlock)) {
 | 
						|
                miFreeStorage(pSLLBlock->next);
 | 
						|
                return FALSE;
 | 
						|
            }
 | 
						|
 | 
						|
            ET->ymax = max(ET->ymax, PrevPt->y);
 | 
						|
            ET->ymin = min(ET->ymin, PrevPt->y);
 | 
						|
            pETEs++;
 | 
						|
        }
 | 
						|
 | 
						|
        PrevPt = CurrPt;
 | 
						|
    }
 | 
						|
    return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This routine moves EdgeTableEntries from the EdgeTable into the Active Edge
 | 
						|
 * Table, leaving them sorted by smaller x coordinate.
 | 
						|
 */
 | 
						|
 | 
						|
static void
 | 
						|
miloadAET(EdgeTableEntry * AET, EdgeTableEntry * ETEs)
 | 
						|
{
 | 
						|
    EdgeTableEntry *pPrevAET;
 | 
						|
    EdgeTableEntry *tmp;
 | 
						|
 | 
						|
    pPrevAET = AET;
 | 
						|
    AET = AET->next;
 | 
						|
    while (ETEs) {
 | 
						|
        while (AET && (AET->bres.minor < ETEs->bres.minor)) {
 | 
						|
            pPrevAET = AET;
 | 
						|
            AET = AET->next;
 | 
						|
        }
 | 
						|
        tmp = ETEs->next;
 | 
						|
        ETEs->next = AET;
 | 
						|
        if (AET)
 | 
						|
            AET->back = ETEs;
 | 
						|
        ETEs->back = pPrevAET;
 | 
						|
        pPrevAET->next = ETEs;
 | 
						|
        pPrevAET = ETEs;
 | 
						|
 | 
						|
        ETEs = tmp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * computeWAET
 | 
						|
 *
 | 
						|
 * This routine links the AET by the nextWETE (winding EdgeTableEntry) link for
 | 
						|
 * use by the winding number rule.  The final Active Edge Table (AET) might
 | 
						|
 * look something like:
 | 
						|
 *
 | 
						|
 * AET
 | 
						|
 * ----------  ---------   ---------
 | 
						|
 * |ymax    |  |ymax    |  |ymax    |
 | 
						|
 * | ...    |  |...     |  |...     |
 | 
						|
 * |next    |->|next    |->|next    |->...
 | 
						|
 * |nextWETE|  |nextWETE|  |nextWETE|
 | 
						|
 * ---------   ---------   ^--------
 | 
						|
 *     |                   |       |
 | 
						|
 *     V------------------->       V---> ...
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void
 | 
						|
micomputeWAET(EdgeTableEntry * AET)
 | 
						|
{
 | 
						|
    EdgeTableEntry *pWETE;
 | 
						|
    int inside = 1;
 | 
						|
    int isInside = 0;
 | 
						|
 | 
						|
    AET->nextWETE = NULL;
 | 
						|
    pWETE = AET;
 | 
						|
    AET = AET->next;
 | 
						|
    while (AET) {
 | 
						|
        if (AET->ClockWise)
 | 
						|
            isInside++;
 | 
						|
        else
 | 
						|
            isInside--;
 | 
						|
 | 
						|
        if ((!inside && !isInside) || (inside && isInside)) {
 | 
						|
            pWETE->nextWETE = AET;
 | 
						|
            pWETE = AET;
 | 
						|
            inside = !inside;
 | 
						|
        }
 | 
						|
        AET = AET->next;
 | 
						|
    }
 | 
						|
    pWETE->nextWETE = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Just a simple insertion sort using pointers and back pointers to sort the
 | 
						|
 * Active Edge Table.
 | 
						|
 */
 | 
						|
 | 
						|
static int
 | 
						|
miInsertionSort(EdgeTableEntry * AET)
 | 
						|
{
 | 
						|
    EdgeTableEntry *pETEchase;
 | 
						|
    EdgeTableEntry *pETEinsert;
 | 
						|
    EdgeTableEntry *pETEchaseBackTMP;
 | 
						|
    int changed = 0;
 | 
						|
 | 
						|
    AET = AET->next;
 | 
						|
    while (AET) {
 | 
						|
        pETEinsert = AET;
 | 
						|
        pETEchase = AET;
 | 
						|
        while (pETEchase->back->bres.minor > AET->bres.minor)
 | 
						|
            pETEchase = pETEchase->back;
 | 
						|
 | 
						|
        AET = AET->next;
 | 
						|
        if (pETEchase != pETEinsert) {
 | 
						|
            pETEchaseBackTMP = pETEchase->back;
 | 
						|
            pETEinsert->back->next = AET;
 | 
						|
            if (AET)
 | 
						|
                AET->back = pETEinsert->back;
 | 
						|
            pETEinsert->next = pETEchase;
 | 
						|
            pETEchase->back->next = pETEinsert;
 | 
						|
            pETEchase->back = pETEinsert;
 | 
						|
            pETEinsert->back = pETEchaseBackTMP;
 | 
						|
            changed = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return changed;
 | 
						|
}
 | 
						|
 | 
						|
/* Find the index of the point with the smallest y */
 | 
						|
static int
 | 
						|
getPolyYBounds(DDXPointPtr pts, int n, int *by, int *ty)
 | 
						|
{
 | 
						|
    DDXPointPtr ptMin;
 | 
						|
    int ymin, ymax;
 | 
						|
    DDXPointPtr ptsStart = pts;
 | 
						|
 | 
						|
    ptMin = pts;
 | 
						|
    ymin = ymax = (pts++)->y;
 | 
						|
 | 
						|
    while (--n > 0) {
 | 
						|
        if (pts->y < ymin) {
 | 
						|
            ptMin = pts;
 | 
						|
            ymin = pts->y;
 | 
						|
        }
 | 
						|
        if (pts->y > ymax)
 | 
						|
            ymax = pts->y;
 | 
						|
 | 
						|
        pts++;
 | 
						|
    }
 | 
						|
 | 
						|
    *by = ymin;
 | 
						|
    *ty = ymax;
 | 
						|
    return ptMin - ptsStart;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Written by Brian Kelleher; Dec. 1985.
 | 
						|
 *
 | 
						|
 * Fill a convex polygon.  If the given polygon is not convex, then the result
 | 
						|
 * is undefined.  The algorithm is to order the edges from smallest y to
 | 
						|
 * largest by partitioning the array into a left edge list and a right edge
 | 
						|
 * list.  The algorithm used to traverse each edge is an extension of
 | 
						|
 * Bresenham's line algorithm with y as the major axis.  For a derivation of
 | 
						|
 * the algorithm, see the author of this code.
 | 
						|
 */
 | 
						|
static Bool
 | 
						|
miFillConvexPoly(DrawablePtr dst, GCPtr pgc, int count, DDXPointPtr ptsIn)
 | 
						|
{
 | 
						|
    int xl = 0, xr = 0;         /* x vals of left and right edges */
 | 
						|
    int dl = 0, dr = 0;         /* decision variables             */
 | 
						|
    int ml = 0, m1l = 0;        /* left edge slope and slope+1    */
 | 
						|
    int mr = 0, m1r = 0;        /* right edge slope and slope+1   */
 | 
						|
    int incr1l = 0, incr2l = 0; /* left edge error increments     */
 | 
						|
    int incr1r = 0, incr2r = 0; /* right edge error increments    */
 | 
						|
    int dy;                     /* delta y                        */
 | 
						|
    int y;                      /* current scanline               */
 | 
						|
    int left, right;            /* indices to first endpoints     */
 | 
						|
    int i;                      /* loop counter                   */
 | 
						|
    int nextleft, nextright;    /* indices to second endpoints    */
 | 
						|
    DDXPointPtr ptsOut, FirstPoint;     /* output buffer               */
 | 
						|
    int *width, *FirstWidth;    /* output buffer                  */
 | 
						|
    int imin;                   /* index of smallest vertex (in y) */
 | 
						|
    int ymin;                   /* y-extents of polygon            */
 | 
						|
    int ymax;
 | 
						|
 | 
						|
    /*
 | 
						|
     *  find leftx, bottomy, rightx, topy, and the index
 | 
						|
     *  of bottomy. Also translate the points.
 | 
						|
     */
 | 
						|
    imin = getPolyYBounds(ptsIn, count, &ymin, &ymax);
 | 
						|
 | 
						|
    dy = ymax - ymin + 1;
 | 
						|
    if ((count < 3) || (dy < 0))
 | 
						|
        return TRUE;
 | 
						|
    ptsOut = FirstPoint = xallocarray(dy, sizeof(DDXPointRec));
 | 
						|
    width = FirstWidth = xallocarray(dy, sizeof(int));
 | 
						|
    if (!FirstPoint || !FirstWidth) {
 | 
						|
        free(FirstWidth);
 | 
						|
        free(FirstPoint);
 | 
						|
        return FALSE;
 | 
						|
    }
 | 
						|
 | 
						|
    nextleft = nextright = imin;
 | 
						|
    y = ptsIn[nextleft].y;
 | 
						|
 | 
						|
    /*
 | 
						|
     *  loop through all edges of the polygon
 | 
						|
     */
 | 
						|
    do {
 | 
						|
        /*
 | 
						|
         *  add a left edge if we need to
 | 
						|
         */
 | 
						|
        if (ptsIn[nextleft].y == y) {
 | 
						|
            left = nextleft;
 | 
						|
 | 
						|
            /*
 | 
						|
             *  find the next edge, considering the end
 | 
						|
             *  conditions of the array.
 | 
						|
             */
 | 
						|
            nextleft++;
 | 
						|
            if (nextleft >= count)
 | 
						|
                nextleft = 0;
 | 
						|
 | 
						|
            /*
 | 
						|
             *  now compute all of the random information
 | 
						|
             *  needed to run the iterative algorithm.
 | 
						|
             */
 | 
						|
            BRESINITPGON(ptsIn[nextleft].y - ptsIn[left].y,
 | 
						|
                         ptsIn[left].x, ptsIn[nextleft].x,
 | 
						|
                         xl, dl, ml, m1l, incr1l, incr2l);
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         *  add a right edge if we need to
 | 
						|
         */
 | 
						|
        if (ptsIn[nextright].y == y) {
 | 
						|
            right = nextright;
 | 
						|
 | 
						|
            /*
 | 
						|
             *  find the next edge, considering the end
 | 
						|
             *  conditions of the array.
 | 
						|
             */
 | 
						|
            nextright--;
 | 
						|
            if (nextright < 0)
 | 
						|
                nextright = count - 1;
 | 
						|
 | 
						|
            /*
 | 
						|
             *  now compute all of the random information
 | 
						|
             *  needed to run the iterative algorithm.
 | 
						|
             */
 | 
						|
            BRESINITPGON(ptsIn[nextright].y - ptsIn[right].y,
 | 
						|
                         ptsIn[right].x, ptsIn[nextright].x,
 | 
						|
                         xr, dr, mr, m1r, incr1r, incr2r);
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         *  generate scans to fill while we still have
 | 
						|
         *  a right edge as well as a left edge.
 | 
						|
         */
 | 
						|
        i = min(ptsIn[nextleft].y, ptsIn[nextright].y) - y;
 | 
						|
        /* in case we're called with non-convex polygon */
 | 
						|
        if (i < 0) {
 | 
						|
            free(FirstWidth);
 | 
						|
            free(FirstPoint);
 | 
						|
            return TRUE;
 | 
						|
        }
 | 
						|
        while (i-- > 0) {
 | 
						|
            ptsOut->y = y;
 | 
						|
 | 
						|
            /*
 | 
						|
             *  reverse the edges if necessary
 | 
						|
             */
 | 
						|
            if (xl < xr) {
 | 
						|
                *(width++) = xr - xl;
 | 
						|
                (ptsOut++)->x = xl;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                *(width++) = xl - xr;
 | 
						|
                (ptsOut++)->x = xr;
 | 
						|
            }
 | 
						|
            y++;
 | 
						|
 | 
						|
            /* increment down the edges */
 | 
						|
            BRESINCRPGON(dl, xl, ml, m1l, incr1l, incr2l);
 | 
						|
            BRESINCRPGON(dr, xr, mr, m1r, incr1r, incr2r);
 | 
						|
        }
 | 
						|
    } while (y != ymax);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Finally, fill the <remaining> spans
 | 
						|
     */
 | 
						|
    (*pgc->ops->FillSpans) (dst, pgc,
 | 
						|
                            ptsOut - FirstPoint, FirstPoint, FirstWidth, 1);
 | 
						|
    free(FirstWidth);
 | 
						|
    free(FirstPoint);
 | 
						|
    return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Written by Brian Kelleher;  Oct. 1985
 | 
						|
 *
 | 
						|
 * Routine to fill a polygon.  Two fill rules are supported: frWINDING and
 | 
						|
 * frEVENODD.
 | 
						|
 */
 | 
						|
static Bool
 | 
						|
miFillGeneralPoly(DrawablePtr dst, GCPtr pgc, int count, DDXPointPtr ptsIn)
 | 
						|
{
 | 
						|
    EdgeTableEntry *pAET;       /* the Active Edge Table   */
 | 
						|
    int y;                      /* the current scanline    */
 | 
						|
    int nPts = 0;               /* number of pts in buffer */
 | 
						|
    EdgeTableEntry *pWETE;      /* Winding Edge Table      */
 | 
						|
    ScanLineList *pSLL;         /* Current ScanLineList    */
 | 
						|
    DDXPointPtr ptsOut;         /* ptr to output buffers   */
 | 
						|
    int *width;
 | 
						|
    DDXPointRec FirstPoint[NUMPTSTOBUFFER];     /* the output buffers */
 | 
						|
    int FirstWidth[NUMPTSTOBUFFER];
 | 
						|
    EdgeTableEntry *pPrevAET;   /* previous AET entry      */
 | 
						|
    EdgeTable ET;               /* Edge Table header node  */
 | 
						|
    EdgeTableEntry AET;         /* Active ET header node   */
 | 
						|
    EdgeTableEntry *pETEs;      /* Edge Table Entries buff */
 | 
						|
    ScanLineListBlock SLLBlock; /* header for ScanLineList */
 | 
						|
    int fixWAET = 0;
 | 
						|
 | 
						|
    if (count < 3)
 | 
						|
        return TRUE;
 | 
						|
 | 
						|
    if (!(pETEs = malloc(sizeof(EdgeTableEntry) * count)))
 | 
						|
        return FALSE;
 | 
						|
    ptsOut = FirstPoint;
 | 
						|
    width = FirstWidth;
 | 
						|
    if (!miCreateETandAET(count, ptsIn, &ET, &AET, pETEs, &SLLBlock)) {
 | 
						|
        free(pETEs);
 | 
						|
        return FALSE;
 | 
						|
    }
 | 
						|
    pSLL = ET.scanlines.next;
 | 
						|
 | 
						|
    if (pgc->fillRule == EvenOddRule) {
 | 
						|
        /*
 | 
						|
         *  for each scanline
 | 
						|
         */
 | 
						|
        for (y = ET.ymin; y < ET.ymax; y++) {
 | 
						|
            /*
 | 
						|
             *  Add a new edge to the active edge table when we
 | 
						|
             *  get to the next edge.
 | 
						|
             */
 | 
						|
            if (pSLL && y == pSLL->scanline) {
 | 
						|
                miloadAET(&AET, pSLL->edgelist);
 | 
						|
                pSLL = pSLL->next;
 | 
						|
            }
 | 
						|
            pPrevAET = &AET;
 | 
						|
            pAET = AET.next;
 | 
						|
 | 
						|
            /*
 | 
						|
             *  for each active edge
 | 
						|
             */
 | 
						|
            while (pAET) {
 | 
						|
                ptsOut->x = pAET->bres.minor;
 | 
						|
                ptsOut++->y = y;
 | 
						|
                *width++ = pAET->next->bres.minor - pAET->bres.minor;
 | 
						|
                nPts++;
 | 
						|
 | 
						|
                /*
 | 
						|
                 *  send out the buffer when its full
 | 
						|
                 */
 | 
						|
                if (nPts == NUMPTSTOBUFFER) {
 | 
						|
                    (*pgc->ops->FillSpans) (dst, pgc,
 | 
						|
                                            nPts, FirstPoint, FirstWidth, 1);
 | 
						|
                    ptsOut = FirstPoint;
 | 
						|
                    width = FirstWidth;
 | 
						|
                    nPts = 0;
 | 
						|
                }
 | 
						|
                EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
 | 
						|
                EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
 | 
						|
            }
 | 
						|
            miInsertionSort(&AET);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {                      /* default to WindingNumber */
 | 
						|
 | 
						|
        /*
 | 
						|
         *  for each scanline
 | 
						|
         */
 | 
						|
        for (y = ET.ymin; y < ET.ymax; y++) {
 | 
						|
            /*
 | 
						|
             *  Add a new edge to the active edge table when we
 | 
						|
             *  get to the next edge.
 | 
						|
             */
 | 
						|
            if (pSLL && y == pSLL->scanline) {
 | 
						|
                miloadAET(&AET, pSLL->edgelist);
 | 
						|
                micomputeWAET(&AET);
 | 
						|
                pSLL = pSLL->next;
 | 
						|
            }
 | 
						|
            pPrevAET = &AET;
 | 
						|
            pAET = AET.next;
 | 
						|
            pWETE = pAET;
 | 
						|
 | 
						|
            /*
 | 
						|
             *  for each active edge
 | 
						|
             */
 | 
						|
            while (pAET) {
 | 
						|
                /*
 | 
						|
                 *  if the next edge in the active edge table is
 | 
						|
                 *  also the next edge in the winding active edge
 | 
						|
                 *  table.
 | 
						|
                 */
 | 
						|
                if (pWETE == pAET) {
 | 
						|
                    ptsOut->x = pAET->bres.minor;
 | 
						|
                    ptsOut++->y = y;
 | 
						|
                    *width++ = pAET->nextWETE->bres.minor - pAET->bres.minor;
 | 
						|
                    nPts++;
 | 
						|
 | 
						|
                    /*
 | 
						|
                     *  send out the buffer
 | 
						|
                     */
 | 
						|
                    if (nPts == NUMPTSTOBUFFER) {
 | 
						|
                        (*pgc->ops->FillSpans) (dst, pgc, nPts, FirstPoint,
 | 
						|
                                                FirstWidth, 1);
 | 
						|
                        ptsOut = FirstPoint;
 | 
						|
                        width = FirstWidth;
 | 
						|
                        nPts = 0;
 | 
						|
                    }
 | 
						|
 | 
						|
                    pWETE = pWETE->nextWETE;
 | 
						|
                    while (pWETE != pAET)
 | 
						|
                        EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
 | 
						|
                    pWETE = pWETE->nextWETE;
 | 
						|
                }
 | 
						|
                EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
 | 
						|
            }
 | 
						|
 | 
						|
            /*
 | 
						|
             *  reevaluate the Winding active edge table if we
 | 
						|
             *  just had to resort it or if we just exited an edge.
 | 
						|
             */
 | 
						|
            if (miInsertionSort(&AET) || fixWAET) {
 | 
						|
                micomputeWAET(&AET);
 | 
						|
                fixWAET = 0;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     *     Get any spans that we missed by buffering
 | 
						|
     */
 | 
						|
    (*pgc->ops->FillSpans) (dst, pgc, nPts, FirstPoint, FirstWidth, 1);
 | 
						|
    free(pETEs);
 | 
						|
    miFreeStorage(SLLBlock.next);
 | 
						|
    return TRUE;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Draw polygons.  This routine translates the point by the origin if
 | 
						|
 *  pGC->miTranslate is non-zero, and calls to the appropriate routine to
 | 
						|
 *  actually scan convert the polygon.
 | 
						|
 */
 | 
						|
void
 | 
						|
miFillPolygon(DrawablePtr dst, GCPtr pgc,
 | 
						|
              int shape, int mode, int count, DDXPointPtr pPts)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int xorg, yorg;
 | 
						|
    DDXPointPtr ppt;
 | 
						|
 | 
						|
    if (count == 0)
 | 
						|
        return;
 | 
						|
 | 
						|
    ppt = pPts;
 | 
						|
    if (pgc->miTranslate) {
 | 
						|
        xorg = dst->x;
 | 
						|
        yorg = dst->y;
 | 
						|
 | 
						|
        if (mode == CoordModeOrigin) {
 | 
						|
            for (i = 0; i < count; i++) {
 | 
						|
                ppt->x += xorg;
 | 
						|
                ppt++->y += yorg;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            ppt->x += xorg;
 | 
						|
            ppt++->y += yorg;
 | 
						|
            for (i = 1; i < count; i++) {
 | 
						|
                ppt->x += (ppt - 1)->x;
 | 
						|
                ppt->y += (ppt - 1)->y;
 | 
						|
                ppt++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if (mode == CoordModePrevious) {
 | 
						|
            ppt++;
 | 
						|
            for (i = 1; i < count; i++) {
 | 
						|
                ppt->x += (ppt - 1)->x;
 | 
						|
                ppt->y += (ppt - 1)->y;
 | 
						|
                ppt++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (shape == Convex)
 | 
						|
        miFillConvexPoly(dst, pgc, count, pPts);
 | 
						|
    else
 | 
						|
        miFillGeneralPoly(dst, pgc, count, pPts);
 | 
						|
}
 |