698 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			698 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
| /* gtf.c  Generate mode timings using the GTF Timing Standard
 | |
|  *
 | |
|  * gcc gtf.c -o gtf -lm -Wall
 | |
|  *
 | |
|  * Copyright (c) 2001, Andy Ritger  aritger@nvidia.com
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  *
 | |
|  * o Redistributions of source code must retain the above copyright
 | |
|  *   notice, this list of conditions and the following disclaimer.
 | |
|  * o Redistributions in binary form must reproduce the above copyright
 | |
|  *   notice, this list of conditions and the following disclaimer
 | |
|  *   in the documentation and/or other materials provided with the
 | |
|  *   distribution.
 | |
|  * o Neither the name of NVIDIA nor the names of its contributors
 | |
|  *   may be used to endorse or promote products derived from this
 | |
|  *   software without specific prior written permission.
 | |
|  *
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
|  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
 | |
|  * NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
 | |
|  * THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
|  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 | |
|  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 | |
|  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | |
|  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 | |
|  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 | |
|  * POSSIBILITY OF SUCH DAMAGE.
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * This program is based on the Generalized Timing Formula(GTF TM)
 | |
|  * Standard Version: 1.0, Revision: 1.0
 | |
|  *
 | |
|  * The GTF Document contains the following Copyright information:
 | |
|  *
 | |
|  * Copyright (c) 1994, 1995, 1996 - Video Electronics Standards
 | |
|  * Association. Duplication of this document within VESA member
 | |
|  * companies for review purposes is permitted. All other rights
 | |
|  * reserved.
 | |
|  *
 | |
|  * While every precaution has been taken in the preparation
 | |
|  * of this standard, the Video Electronics Standards Association and
 | |
|  * its contributors assume no responsibility for errors or omissions,
 | |
|  * and make no warranties, expressed or implied, of functionality
 | |
|  * of suitability for any purpose. The sample code contained within
 | |
|  * this standard may be used without restriction.
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * The GTF EXCEL(TM) SPREADSHEET, a sample (and the definitive)
 | |
|  * implementation of the GTF Timing Standard, is available at:
 | |
|  *
 | |
|  * ftp://ftp.vesa.org/pub/GTF/GTF_V1R1.xls
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * This program takes a desired resolution and vertical refresh rate,
 | |
|  * and computes mode timings according to the GTF Timing Standard.
 | |
|  * These mode timings can then be formatted as an XServer modeline
 | |
|  * or a mode description for use by fbset(8).
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * NOTES:
 | |
|  *
 | |
|  * The GTF allows for computation of "margins" (the visible border
 | |
|  * surrounding the addressable video); on most non-overscan type
 | |
|  * systems, the margin period is zero.  I've implemented the margin
 | |
|  * computations but not enabled it because 1) I don't really have
 | |
|  * any experience with this, and 2) neither XServer modelines nor
 | |
|  * fbset fb.modes provide an obvious way for margin timings to be
 | |
|  * included in their mode descriptions (needs more investigation).
 | |
|  *
 | |
|  * The GTF provides for computation of interlaced mode timings;
 | |
|  * I've implemented the computations but not enabled them, yet.
 | |
|  * I should probably enable and test this at some point.
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  * TODO:
 | |
|  *
 | |
|  * o Add support for interlaced modes.
 | |
|  *
 | |
|  * o Implement the other portions of the GTF: compute mode timings
 | |
|  *   given either the desired pixel clock or the desired horizontal
 | |
|  *   frequency.
 | |
|  *
 | |
|  * o It would be nice if this were more general purpose to do things
 | |
|  *   outside the scope of the GTF: like generate double scan mode
 | |
|  *   timings, for example.
 | |
|  *
 | |
|  * o Printing digits to the right of the decimal point when the
 | |
|  *   digits are 0 annoys me.
 | |
|  *
 | |
|  * o Error checking.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #ifdef HAVE_XORG_CONFIG_H
 | |
| #include <xorg-config.h>
 | |
| #endif
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #define MARGIN_PERCENT    1.8   /* % of active vertical image                */
 | |
| #define CELL_GRAN         8.0   /* assumed character cell granularity        */
 | |
| #define MIN_PORCH         1     /* minimum front porch                       */
 | |
| #define V_SYNC_RQD        3     /* width of vsync in lines                   */
 | |
| #define H_SYNC_PERCENT    8.0   /* width of hsync as % of total line         */
 | |
| #define MIN_VSYNC_PLUS_BP 550.0 /* min time of vsync + back porch (microsec) */
 | |
| #define M                 600.0 /* blanking formula gradient                 */
 | |
| #define C                 40.0  /* blanking formula offset                   */
 | |
| #define K                 128.0 /* blanking formula scaling factor           */
 | |
| #define J                 20.0  /* blanking formula scaling factor           */
 | |
| 
 | |
| /* C' and M' are part of the Blanking Duty Cycle computation */
 | |
| 
 | |
| #define C_PRIME           (((C - J) * K/256.0) + J)
 | |
| #define M_PRIME           (K/256.0 * M)
 | |
| 
 | |
| /* struct definitions */
 | |
| 
 | |
| typedef struct __mode {
 | |
|     int hr, hss, hse, hfl;
 | |
|     int vr, vss, vse, vfl;
 | |
|     float pclk, h_freq, v_freq;
 | |
| } mode;
 | |
| 
 | |
| typedef struct __options {
 | |
|     int x, y;
 | |
|     int xorgmode, fbmode;
 | |
|     float v_freq;
 | |
| } options;
 | |
| 
 | |
| /* prototypes */
 | |
| 
 | |
| void print_value(int n, const char *name, float val);
 | |
| void print_xf86_mode(mode * m);
 | |
| void print_fb_mode(mode * m);
 | |
| mode *vert_refresh(int h_pixels, int v_lines, float freq,
 | |
|                    int interlaced, int margins);
 | |
| options *parse_command_line(int argc, char *argv[]);
 | |
| 
 | |
| /*
 | |
|  * print_value() - print the result of the named computation; this is
 | |
|  * useful when comparing against the GTF EXCEL spreadsheet.
 | |
|  */
 | |
| 
 | |
| int global_verbose = 0;
 | |
| 
 | |
| void
 | |
| print_value(int n, const char *name, float val)
 | |
| {
 | |
|     if (global_verbose) {
 | |
|         printf("%2d: %-27s: %15f\n", n, name, val);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* print_xf86_mode() - print the XServer modeline, given mode timings. */
 | |
| 
 | |
| void
 | |
| print_xf86_mode(mode * m)
 | |
| {
 | |
|     printf("\n");
 | |
|     printf("  # %dx%d @ %.2f Hz (GTF) hsync: %.2f kHz; pclk: %.2f MHz\n",
 | |
|            m->hr, m->vr, m->v_freq, m->h_freq, m->pclk);
 | |
| 
 | |
|     printf("  Modeline \"%dx%d_%.2f\"  %.2f"
 | |
|            "  %d %d %d %d"
 | |
|            "  %d %d %d %d"
 | |
|            "  -HSync +Vsync\n\n",
 | |
|            m->hr, m->vr, m->v_freq, m->pclk,
 | |
|            m->hr, m->hss, m->hse, m->hfl, m->vr, m->vss, m->vse, m->vfl);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * print_fb_mode() - print a mode description in fbset(8) format;
 | |
|  * see the fb.modes(8) manpage.  The timing description used in
 | |
|  * this is rather odd; they use "left and right margin" to refer
 | |
|  * to the portion of the hblank before and after the sync pulse
 | |
|  * by conceptually wrapping the portion of the blank after the pulse
 | |
|  * to infront of the visible region; ie:
 | |
|  *
 | |
|  *
 | |
|  * Timing description I'm accustomed to:
 | |
|  *
 | |
|  *
 | |
|  *
 | |
|  *     <--------1--------> <--2--> <--3--> <--4-->
 | |
|  *                                _________
 | |
|  *    |-------------------|_______|       |_______
 | |
|  *
 | |
|  *                        R       SS      SE     FL
 | |
|  *
 | |
|  * 1: visible image
 | |
|  * 2: blank before sync (aka front porch)
 | |
|  * 3: sync pulse
 | |
|  * 4: blank after sync (aka back porch)
 | |
|  * R: Resolution
 | |
|  * SS: Sync Start
 | |
|  * SE: Sync End
 | |
|  * FL: Frame Length
 | |
|  *
 | |
|  *
 | |
|  * But the fb.modes format is:
 | |
|  *
 | |
|  *
 | |
|  *    <--4--> <--------1--------> <--2--> <--3-->
 | |
|  *                                       _________
 | |
|  *    _______|-------------------|_______|       |
 | |
|  *
 | |
|  * The fb.modes(8) manpage refers to <4> and <2> as the left and
 | |
|  * right "margin" (as well as upper and lower margin in the vertical
 | |
|  * direction) -- note that this has nothing to do with the term
 | |
|  * "margin" used in the GTF Timing Standard.
 | |
|  *
 | |
|  * XXX always prints the 32 bit mode -- should I provide a command
 | |
|  * line option to specify the bpp?  It's simple enough for a user
 | |
|  * to edit the mode description after it's generated.
 | |
|  */
 | |
| 
 | |
| void
 | |
| print_fb_mode(mode * m)
 | |
| {
 | |
|     printf("\n");
 | |
|     printf("mode \"%dx%d %.2fHz 32bit (GTF)\"\n", m->hr, m->vr, m->v_freq);
 | |
|     printf("    # PCLK: %.2f MHz, H: %.2f kHz, V: %.2f Hz\n",
 | |
|            m->pclk, m->h_freq, m->v_freq);
 | |
|     printf("    geometry %d %d %d %d 32\n", m->hr, m->vr, m->hr, m->vr);
 | |
|     printf("    timings %d %d %d %d %d %d %d\n", (int) rint(1000000.0 / m->pclk),       /* pixclock in picoseconds */
 | |
|            m->hfl - m->hse,     /* left margin (in pixels) */
 | |
|            m->hss - m->hr,      /* right margin (in pixels) */
 | |
|            m->vfl - m->vse,     /* upper margin (in pixel lines) */
 | |
|            m->vss - m->vr,      /* lower margin (in pixel lines) */
 | |
|            m->hse - m->hss,     /* horizontal sync length (pixels) */
 | |
|            m->vse - m->vss);    /* vert sync length (pixel lines) */
 | |
|     printf("    hsync low\n");
 | |
|     printf("    vsync high\n");
 | |
|     printf("endmode\n\n");
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * vert_refresh() - as defined by the GTF Timing Standard, compute the
 | |
|  * Stage 1 Parameters using the vertical refresh frequency.  In other
 | |
|  * words: input a desired resolution and desired refresh rate, and
 | |
|  * output the GTF mode timings.
 | |
|  *
 | |
|  * XXX All the code is in place to compute interlaced modes, but I don't
 | |
|  * feel like testing it right now.
 | |
|  *
 | |
|  * XXX margin computations are implemented but not tested (nor used by
 | |
|  * XServer of fbset mode descriptions, from what I can tell).
 | |
|  */
 | |
| 
 | |
| mode *
 | |
| vert_refresh(int h_pixels, int v_lines, float freq, int interlaced, int margins)
 | |
| {
 | |
|     float h_pixels_rnd;
 | |
|     float v_lines_rnd;
 | |
|     float v_field_rate_rqd;
 | |
|     float top_margin;
 | |
|     float bottom_margin;
 | |
|     float interlace;
 | |
|     float h_period_est;
 | |
|     float vsync_plus_bp;
 | |
|     float v_back_porch;
 | |
|     float total_v_lines;
 | |
|     float v_field_rate_est;
 | |
|     float h_period;
 | |
|     float v_field_rate;
 | |
|     float v_frame_rate;
 | |
|     float left_margin;
 | |
|     float right_margin;
 | |
|     float total_active_pixels;
 | |
|     float ideal_duty_cycle;
 | |
|     float h_blank;
 | |
|     float total_pixels;
 | |
|     float pixel_freq;
 | |
|     float h_freq;
 | |
| 
 | |
|     float h_sync;
 | |
|     float h_front_porch;
 | |
|     float v_odd_front_porch_lines;
 | |
| 
 | |
|     mode *m = (mode *) malloc(sizeof(mode));
 | |
| 
 | |
|     /*  1. In order to give correct results, the number of horizontal
 | |
|      *  pixels requested is first processed to ensure that it is divisible
 | |
|      *  by the character size, by rounding it to the nearest character
 | |
|      *  cell boundary:
 | |
|      *
 | |
|      *  [H PIXELS RND] = ((ROUND([H PIXELS]/[CELL GRAN RND],0))*[CELLGRAN RND])
 | |
|      */
 | |
| 
 | |
|     h_pixels_rnd = rint((float) h_pixels / CELL_GRAN) * CELL_GRAN;
 | |
| 
 | |
|     print_value(1, "[H PIXELS RND]", h_pixels_rnd);
 | |
| 
 | |
|     /*  2. If interlace is requested, the number of vertical lines assumed
 | |
|      *  by the calculation must be halved, as the computation calculates
 | |
|      *  the number of vertical lines per field. In either case, the
 | |
|      *  number of lines is rounded to the nearest integer.
 | |
|      *
 | |
|      *  [V LINES RND] = IF([INT RQD?]="y", ROUND([V LINES]/2,0),
 | |
|      *                                     ROUND([V LINES],0))
 | |
|      */
 | |
| 
 | |
|     v_lines_rnd = interlaced ?
 | |
|         rint((float) v_lines) / 2.0 : rint((float) v_lines);
 | |
| 
 | |
|     print_value(2, "[V LINES RND]", v_lines_rnd);
 | |
| 
 | |
|     /*  3. Find the frame rate required:
 | |
|      *
 | |
|      *  [V FIELD RATE RQD] = IF([INT RQD?]="y", [I/P FREQ RQD]*2,
 | |
|      *                                          [I/P FREQ RQD])
 | |
|      */
 | |
| 
 | |
|     v_field_rate_rqd = interlaced ? (freq * 2.0) : (freq);
 | |
| 
 | |
|     print_value(3, "[V FIELD RATE RQD]", v_field_rate_rqd);
 | |
| 
 | |
|     /*  4. Find number of lines in Top margin:
 | |
|      *
 | |
|      *  [TOP MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
 | |
|      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
 | |
|      *          0)
 | |
|      */
 | |
| 
 | |
|     top_margin = margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
 | |
| 
 | |
|     print_value(4, "[TOP MARGIN (LINES)]", top_margin);
 | |
| 
 | |
|     /*  5. Find number of lines in Bottom margin:
 | |
|      *
 | |
|      *  [BOT MARGIN (LINES)] = IF([MARGINS RQD?]="Y",
 | |
|      *          ROUND(([MARGIN%]/100*[V LINES RND]),0),
 | |
|      *          0)
 | |
|      */
 | |
| 
 | |
|     bottom_margin =
 | |
|         margins ? rint(MARGIN_PERCENT / 100.0 * v_lines_rnd) : (0.0);
 | |
| 
 | |
|     print_value(5, "[BOT MARGIN (LINES)]", bottom_margin);
 | |
| 
 | |
|     /*  6. If interlace is required, then set variable [INTERLACE]=0.5:
 | |
|      *
 | |
|      *  [INTERLACE]=(IF([INT RQD?]="y",0.5,0))
 | |
|      */
 | |
| 
 | |
|     interlace = interlaced ? 0.5 : 0.0;
 | |
| 
 | |
|     print_value(6, "[INTERLACE]", interlace);
 | |
| 
 | |
|     /*  7. Estimate the Horizontal period
 | |
|      *
 | |
|      *  [H PERIOD EST] = ((1/[V FIELD RATE RQD]) - [MIN VSYNC+BP]/1000000) /
 | |
|      *                    ([V LINES RND] + (2*[TOP MARGIN (LINES)]) +
 | |
|      *                     [MIN PORCH RND]+[INTERLACE]) * 1000000
 | |
|      */
 | |
| 
 | |
|     h_period_est = (((1.0 / v_field_rate_rqd) - (MIN_VSYNC_PLUS_BP / 1000000.0))
 | |
|                     / (v_lines_rnd + (2 * top_margin) + MIN_PORCH + interlace)
 | |
|                     * 1000000.0);
 | |
| 
 | |
|     print_value(7, "[H PERIOD EST]", h_period_est);
 | |
| 
 | |
|     /*  8. Find the number of lines in V sync + back porch:
 | |
|      *
 | |
|      *  [V SYNC+BP] = ROUND(([MIN VSYNC+BP]/[H PERIOD EST]),0)
 | |
|      */
 | |
| 
 | |
|     vsync_plus_bp = rint(MIN_VSYNC_PLUS_BP / h_period_est);
 | |
| 
 | |
|     print_value(8, "[V SYNC+BP]", vsync_plus_bp);
 | |
| 
 | |
|     /*  9. Find the number of lines in V back porch alone:
 | |
|      *
 | |
|      *  [V BACK PORCH] = [V SYNC+BP] - [V SYNC RND]
 | |
|      *
 | |
|      *  XXX is "[V SYNC RND]" a typo? should be [V SYNC RQD]?
 | |
|      */
 | |
| 
 | |
|     v_back_porch = vsync_plus_bp - V_SYNC_RQD;
 | |
| 
 | |
|     print_value(9, "[V BACK PORCH]", v_back_porch);
 | |
| 
 | |
|     /*  10. Find the total number of lines in Vertical field period:
 | |
|      *
 | |
|      *  [TOTAL V LINES] = [V LINES RND] + [TOP MARGIN (LINES)] +
 | |
|      *                    [BOT MARGIN (LINES)] + [V SYNC+BP] + [INTERLACE] +
 | |
|      *                    [MIN PORCH RND]
 | |
|      */
 | |
| 
 | |
|     total_v_lines = v_lines_rnd + top_margin + bottom_margin + vsync_plus_bp +
 | |
|         interlace + MIN_PORCH;
 | |
| 
 | |
|     print_value(10, "[TOTAL V LINES]", total_v_lines);
 | |
| 
 | |
|     /*  11. Estimate the Vertical field frequency:
 | |
|      *
 | |
|      *  [V FIELD RATE EST] = 1 / [H PERIOD EST] / [TOTAL V LINES] * 1000000
 | |
|      */
 | |
| 
 | |
|     v_field_rate_est = 1.0 / h_period_est / total_v_lines * 1000000.0;
 | |
| 
 | |
|     print_value(11, "[V FIELD RATE EST]", v_field_rate_est);
 | |
| 
 | |
|     /*  12. Find the actual horizontal period:
 | |
|      *
 | |
|      *  [H PERIOD] = [H PERIOD EST] / ([V FIELD RATE RQD] / [V FIELD RATE EST])
 | |
|      */
 | |
| 
 | |
|     h_period = h_period_est / (v_field_rate_rqd / v_field_rate_est);
 | |
| 
 | |
|     print_value(12, "[H PERIOD]", h_period);
 | |
| 
 | |
|     /*  13. Find the actual Vertical field frequency:
 | |
|      *
 | |
|      *  [V FIELD RATE] = 1 / [H PERIOD] / [TOTAL V LINES] * 1000000
 | |
|      */
 | |
| 
 | |
|     v_field_rate = 1.0 / h_period / total_v_lines * 1000000.0;
 | |
| 
 | |
|     print_value(13, "[V FIELD RATE]", v_field_rate);
 | |
| 
 | |
|     /*  14. Find the Vertical frame frequency:
 | |
|      *
 | |
|      *  [V FRAME RATE] = (IF([INT RQD?]="y", [V FIELD RATE]/2, [V FIELD RATE]))
 | |
|      */
 | |
| 
 | |
|     v_frame_rate = interlaced ? v_field_rate / 2.0 : v_field_rate;
 | |
| 
 | |
|     print_value(14, "[V FRAME RATE]", v_frame_rate);
 | |
| 
 | |
|     /*  15. Find number of pixels in left margin:
 | |
|      *
 | |
|      *  [LEFT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
 | |
|      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
 | |
|      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
 | |
|      *          0))
 | |
|      */
 | |
| 
 | |
|     left_margin = margins ?
 | |
|         rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
 | |
|         0.0;
 | |
| 
 | |
|     print_value(15, "[LEFT MARGIN (PIXELS)]", left_margin);
 | |
| 
 | |
|     /*  16. Find number of pixels in right margin:
 | |
|      *
 | |
|      *  [RIGHT MARGIN (PIXELS)] = (IF( [MARGINS RQD?]="Y",
 | |
|      *          (ROUND( ([H PIXELS RND] * [MARGIN%] / 100 /
 | |
|      *                   [CELL GRAN RND]),0)) * [CELL GRAN RND],
 | |
|      *          0))
 | |
|      */
 | |
| 
 | |
|     right_margin = margins ?
 | |
|         rint(h_pixels_rnd * MARGIN_PERCENT / 100.0 / CELL_GRAN) * CELL_GRAN :
 | |
|         0.0;
 | |
| 
 | |
|     print_value(16, "[RIGHT MARGIN (PIXELS)]", right_margin);
 | |
| 
 | |
|     /*  17. Find total number of active pixels in image and left and right
 | |
|      *  margins:
 | |
|      *
 | |
|      *  [TOTAL ACTIVE PIXELS] = [H PIXELS RND] + [LEFT MARGIN (PIXELS)] +
 | |
|      *                          [RIGHT MARGIN (PIXELS)]
 | |
|      */
 | |
| 
 | |
|     total_active_pixels = h_pixels_rnd + left_margin + right_margin;
 | |
| 
 | |
|     print_value(17, "[TOTAL ACTIVE PIXELS]", total_active_pixels);
 | |
| 
 | |
|     /*  18. Find the ideal blanking duty cycle from the blanking duty cycle
 | |
|      *  equation:
 | |
|      *
 | |
|      *  [IDEAL DUTY CYCLE] = [C'] - ([M']*[H PERIOD]/1000)
 | |
|      */
 | |
| 
 | |
|     ideal_duty_cycle = C_PRIME - (M_PRIME * h_period / 1000.0);
 | |
| 
 | |
|     print_value(18, "[IDEAL DUTY CYCLE]", ideal_duty_cycle);
 | |
| 
 | |
|     /*  19. Find the number of pixels in the blanking time to the nearest
 | |
|      *  double character cell:
 | |
|      *
 | |
|      *  [H BLANK (PIXELS)] = (ROUND(([TOTAL ACTIVE PIXELS] *
 | |
|      *                               [IDEAL DUTY CYCLE] /
 | |
|      *                               (100-[IDEAL DUTY CYCLE]) /
 | |
|      *                               (2*[CELL GRAN RND])), 0))
 | |
|      *                       * (2*[CELL GRAN RND])
 | |
|      */
 | |
| 
 | |
|     h_blank = rint(total_active_pixels *
 | |
|                    ideal_duty_cycle /
 | |
|                    (100.0 - ideal_duty_cycle) /
 | |
|                    (2.0 * CELL_GRAN)) * (2.0 * CELL_GRAN);
 | |
| 
 | |
|     print_value(19, "[H BLANK (PIXELS)]", h_blank);
 | |
| 
 | |
|     /*  20. Find total number of pixels:
 | |
|      *
 | |
|      *  [TOTAL PIXELS] = [TOTAL ACTIVE PIXELS] + [H BLANK (PIXELS)]
 | |
|      */
 | |
| 
 | |
|     total_pixels = total_active_pixels + h_blank;
 | |
| 
 | |
|     print_value(20, "[TOTAL PIXELS]", total_pixels);
 | |
| 
 | |
|     /*  21. Find pixel clock frequency:
 | |
|      *
 | |
|      *  [PIXEL FREQ] = [TOTAL PIXELS] / [H PERIOD]
 | |
|      */
 | |
| 
 | |
|     pixel_freq = total_pixels / h_period;
 | |
| 
 | |
|     print_value(21, "[PIXEL FREQ]", pixel_freq);
 | |
| 
 | |
|     /*  22. Find horizontal frequency:
 | |
|      *
 | |
|      *  [H FREQ] = 1000 / [H PERIOD]
 | |
|      */
 | |
| 
 | |
|     h_freq = 1000.0 / h_period;
 | |
| 
 | |
|     print_value(22, "[H FREQ]", h_freq);
 | |
| 
 | |
|     /* Stage 1 computations are now complete; I should really pass
 | |
|        the results to another function and do the Stage 2
 | |
|        computations, but I only need a few more values so I'll just
 | |
|        append the computations here for now */
 | |
| 
 | |
|     /*  17. Find the number of pixels in the horizontal sync period:
 | |
|      *
 | |
|      *  [H SYNC (PIXELS)] =(ROUND(([H SYNC%] / 100 * [TOTAL PIXELS] /
 | |
|      *                             [CELL GRAN RND]),0))*[CELL GRAN RND]
 | |
|      */
 | |
| 
 | |
|     h_sync =
 | |
|         rint(H_SYNC_PERCENT / 100.0 * total_pixels / CELL_GRAN) * CELL_GRAN;
 | |
| 
 | |
|     print_value(17, "[H SYNC (PIXELS)]", h_sync);
 | |
| 
 | |
|     /*  18. Find the number of pixels in the horizontal front porch period:
 | |
|      *
 | |
|      *  [H FRONT PORCH (PIXELS)] = ([H BLANK (PIXELS)]/2)-[H SYNC (PIXELS)]
 | |
|      */
 | |
| 
 | |
|     h_front_porch = (h_blank / 2.0) - h_sync;
 | |
| 
 | |
|     print_value(18, "[H FRONT PORCH (PIXELS)]", h_front_porch);
 | |
| 
 | |
|     /*  36. Find the number of lines in the odd front porch period:
 | |
|      *
 | |
|      *  [V ODD FRONT PORCH(LINES)]=([MIN PORCH RND]+[INTERLACE])
 | |
|      */
 | |
| 
 | |
|     v_odd_front_porch_lines = MIN_PORCH + interlace;
 | |
| 
 | |
|     print_value(36, "[V ODD FRONT PORCH(LINES)]", v_odd_front_porch_lines);
 | |
| 
 | |
|     /* finally, pack the results in the mode struct */
 | |
| 
 | |
|     m->hr = (int) (h_pixels_rnd);
 | |
|     m->hss = (int) (h_pixels_rnd + h_front_porch);
 | |
|     m->hse = (int) (h_pixels_rnd + h_front_porch + h_sync);
 | |
|     m->hfl = (int) (total_pixels);
 | |
| 
 | |
|     m->vr = (int) (v_lines_rnd);
 | |
|     m->vss = (int) (v_lines_rnd + v_odd_front_porch_lines);
 | |
|     m->vse = (int) (int) (v_lines_rnd + v_odd_front_porch_lines + V_SYNC_RQD);
 | |
|     m->vfl = (int) (total_v_lines);
 | |
| 
 | |
|     m->pclk = pixel_freq;
 | |
|     m->h_freq = h_freq;
 | |
|     m->v_freq = freq;
 | |
| 
 | |
|     return m;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * parse_command_line() - parse the command line and return an
 | |
|  * alloced structure containing the results.  On error print usage
 | |
|  * and return NULL.
 | |
|  */
 | |
| 
 | |
| options *
 | |
| parse_command_line(int argc, char *argv[])
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     options *o = (options *) calloc(1, sizeof(options));
 | |
| 
 | |
|     if (argc < 4)
 | |
|         goto bad_option;
 | |
| 
 | |
|     o->x = atoi(argv[1]);
 | |
|     o->y = atoi(argv[2]);
 | |
|     o->v_freq = atof(argv[3]);
 | |
| 
 | |
|     /* XXX should check for errors in the above */
 | |
| 
 | |
|     n = 4;
 | |
| 
 | |
|     while (n < argc) {
 | |
|         if ((strcmp(argv[n], "-v") == 0) || (strcmp(argv[n], "--verbose") == 0)) {
 | |
|             global_verbose = 1;
 | |
|         }
 | |
|         else if ((strcmp(argv[n], "-f") == 0) ||
 | |
|                  (strcmp(argv[n], "--fbmode") == 0)) {
 | |
|             o->fbmode = 1;
 | |
|         }
 | |
|         else if ((strcmp(argv[n], "-x") == 0) ||
 | |
|                  (strcmp(argv[n], "--xorgmode") == 0) ||
 | |
|                  (strcmp(argv[n], "--xf86mode") == 0)) {
 | |
|             o->xorgmode = 1;
 | |
|         }
 | |
|         else {
 | |
|             goto bad_option;
 | |
|         }
 | |
| 
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
|     /* if neither xorgmode nor fbmode were requested, default to
 | |
|        xorgmode */
 | |
| 
 | |
|     if (!o->fbmode && !o->xorgmode)
 | |
|         o->xorgmode = 1;
 | |
| 
 | |
|     return o;
 | |
| 
 | |
|  bad_option:
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
|     fprintf(stderr, "usage: %s x y refresh [-v|--verbose] "
 | |
|             "[-f|--fbmode] [-x|--xorgmode]\n", argv[0]);
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     fprintf(stderr, "            x : the desired horizontal "
 | |
|             "resolution (required)\n");
 | |
|     fprintf(stderr, "            y : the desired vertical "
 | |
|             "resolution (required)\n");
 | |
|     fprintf(stderr, "      refresh : the desired refresh " "rate (required)\n");
 | |
|     fprintf(stderr, " -v|--verbose : enable verbose printouts "
 | |
|             "(traces each step of the computation)\n");
 | |
|     fprintf(stderr, "  -f|--fbmode : output an fbset(8)-style mode "
 | |
|             "description\n");
 | |
|     fprintf(stderr, " -x|--xorgmode : output an " __XSERVERNAME__ "-style mode "
 | |
|             "description (this is the default\n"
 | |
|             "                if no mode description is requested)\n");
 | |
| 
 | |
|     fprintf(stderr, "\n");
 | |
| 
 | |
|     free(o);
 | |
|     return NULL;
 | |
| 
 | |
| }
 | |
| 
 | |
| int
 | |
| main(int argc, char *argv[])
 | |
| {
 | |
|     mode *m;
 | |
|     options *o;
 | |
| 
 | |
|     o = parse_command_line(argc, argv);
 | |
|     if (!o)
 | |
|         exit(1);
 | |
| 
 | |
|     m = vert_refresh(o->x, o->y, o->v_freq, 0, 0);
 | |
|     if (!m)
 | |
|         exit(1);
 | |
| 
 | |
|     if (o->xorgmode)
 | |
|         print_xf86_mode(m);
 | |
| 
 | |
|     if (o->fbmode)
 | |
|         print_fb_mode(m);
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| }
 |