1192 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1192 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
| /*
 | |
|  *
 | |
|  * Copyright © 2006-2009 Simon Thum             simon dot thum at gmx dot de
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a
 | |
|  * copy of this software and associated documentation files (the "Software"),
 | |
|  * to deal in the Software without restriction, including without limitation
 | |
|  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 | |
|  * and/or sell copies of the Software, and to permit persons to whom the
 | |
|  * Software is furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice (including the next
 | |
|  * paragraph) shall be included in all copies or substantial portions of the
 | |
|  * Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 | |
|  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 | |
|  * DEALINGS IN THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include <dix-config.h>
 | |
| 
 | |
| #include <math.h>
 | |
| 
 | |
| #include "dix/exevents_priv.h"
 | |
| #include "dix/ptrveloc_priv.h"
 | |
| #include "os/bug_priv.h"
 | |
| 
 | |
| #include <ptrveloc.h>
 | |
| #include <X11/Xatom.h>
 | |
| #include <os.h>
 | |
| 
 | |
| #include <xserver-properties.h>
 | |
| 
 | |
| /*****************************************************************************
 | |
|  * Predictable pointer acceleration
 | |
|  *
 | |
|  * 2006-2009 by Simon Thum (simon [dot] thum [at] gmx de)
 | |
|  *
 | |
|  * Serves 3 complementary functions:
 | |
|  * 1) provide a sophisticated ballistic velocity estimate to improve
 | |
|  *    the relation between velocity (of the device) and acceleration
 | |
|  * 2) make arbitrary acceleration profiles possible
 | |
|  * 3) decelerate by two means (constant and adaptive) if enabled
 | |
|  *
 | |
|  * Important concepts are the
 | |
|  *
 | |
|  * - Scheme
 | |
|  *      which selects the basic algorithm
 | |
|  *      (see devices.c/InitPointerAccelerationScheme)
 | |
|  * - Profile
 | |
|  *      which returns an acceleration
 | |
|  *      for a given velocity
 | |
|  *
 | |
|  *  The profile can be selected by the user at runtime.
 | |
|  *  The classic profile is intended to cleanly perform old-style
 | |
|  *  function selection (threshold =/!= 0)
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
| /* fwds */
 | |
| static double
 | |
| SimpleSmoothProfile(DeviceIntPtr dev, DeviceVelocityPtr vel, double velocity,
 | |
|                     double threshold, double acc);
 | |
| static PointerAccelerationProfileFunc
 | |
| GetAccelerationProfile(DeviceVelocityPtr vel, int profile_num);
 | |
| static BOOL
 | |
| InitializePredictableAccelerationProperties(DeviceIntPtr,
 | |
|                                             DeviceVelocityPtr,
 | |
|                                             PredictableAccelSchemePtr);
 | |
| static BOOL
 | |
| DeletePredictableAccelerationProperties(DeviceIntPtr,
 | |
|                                         PredictableAccelSchemePtr);
 | |
| 
 | |
| /*#define PTRACCEL_DEBUGGING*/
 | |
| 
 | |
| #ifdef PTRACCEL_DEBUGGING
 | |
| #define DebugAccelF(...) ErrorF("dix/ptraccel: " __VA_ARGS__)
 | |
| #else
 | |
| #define DebugAccelF(...)        /* */
 | |
| #endif
 | |
| 
 | |
| /********************************
 | |
|  *  Init/Uninit
 | |
|  *******************************/
 | |
| 
 | |
| /* some int which is not a profile number */
 | |
| #define PROFILE_UNINITIALIZE (-100)
 | |
| 
 | |
| static int SetAccelerationProfile(DeviceVelocityPtr vel, int profile_num);
 | |
| 
 | |
| /**
 | |
|  * Init DeviceVelocity struct so it should match the average case
 | |
|  */
 | |
| static void InitVelocityData(DeviceVelocityPtr vel)
 | |
| {
 | |
|     memset(vel, 0, sizeof(DeviceVelocityRec));
 | |
| 
 | |
|     vel->corr_mul = 10.0;       /* dots per 10 millisecond should be usable */
 | |
|     vel->const_acceleration = 1.0;      /* no acceleration/deceleration  */
 | |
|     vel->reset_time = 300;
 | |
|     vel->use_softening = 1;
 | |
|     vel->min_acceleration = 1.0;        /* don't decelerate */
 | |
|     vel->max_rel_diff = 0.2;
 | |
|     vel->max_diff = 1.0;
 | |
|     vel->initial_range = 2;
 | |
|     vel->average_accel = TRUE;
 | |
|     SetAccelerationProfile(vel, AccelProfileClassic);
 | |
|     InitTrackers(vel, 16);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Clean up DeviceVelocityRec
 | |
|  */
 | |
| static void FreeVelocityData(DeviceVelocityPtr vel)
 | |
| {
 | |
|     free(vel->tracker);
 | |
|     SetAccelerationProfile(vel, PROFILE_UNINITIALIZE);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Init predictable scheme
 | |
|  */
 | |
| Bool
 | |
| InitPredictableAccelerationScheme(DeviceIntPtr dev,
 | |
|                                   ValuatorAccelerationPtr protoScheme)
 | |
| {
 | |
|     DeviceVelocityPtr vel;
 | |
|     ValuatorAccelerationRec scheme;
 | |
|     PredictableAccelSchemePtr schemeData;
 | |
| 
 | |
|     scheme = *protoScheme;
 | |
|     vel = calloc(1, sizeof(DeviceVelocityRec));
 | |
|     schemeData = calloc(1, sizeof(PredictableAccelSchemeRec));
 | |
|     if (!vel || !schemeData) {
 | |
|         free(vel);
 | |
|         free(schemeData);
 | |
|         return FALSE;
 | |
|     }
 | |
|     InitVelocityData(vel);
 | |
|     schemeData->vel = vel;
 | |
|     scheme.accelData = schemeData;
 | |
|     if (!InitializePredictableAccelerationProperties(dev, vel, schemeData)) {
 | |
|         FreeVelocityData(vel);
 | |
|         free(vel);
 | |
|         free(schemeData);
 | |
|         return FALSE;
 | |
|     }
 | |
|     /* all fine, assign scheme to device */
 | |
|     dev->valuator->accelScheme = scheme;
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  Uninit scheme
 | |
|  */
 | |
| void
 | |
| AccelerationDefaultCleanup(DeviceIntPtr dev)
 | |
| {
 | |
|     DeviceVelocityPtr vel = GetDevicePredictableAccelData(dev);
 | |
| 
 | |
|     if (vel) {
 | |
|         /* the proper guarantee would be that we're not inside of
 | |
|          * AccelSchemeProc(), but that seems impossible. Schemes don't get
 | |
|          * switched often anyway.
 | |
|          */
 | |
|         input_lock();
 | |
|         dev->valuator->accelScheme.AccelSchemeProc = NULL;
 | |
|         FreeVelocityData(vel);
 | |
|         free(vel);
 | |
|         DeletePredictableAccelerationProperties(dev,
 | |
|                                                 (PredictableAccelSchemePtr)
 | |
|                                                 dev->valuator->accelScheme.
 | |
|                                                 accelData);
 | |
|         free(dev->valuator->accelScheme.accelData);
 | |
|         dev->valuator->accelScheme.accelData = NULL;
 | |
|         input_unlock();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*************************
 | |
|  * Input property support
 | |
|  ************************/
 | |
| 
 | |
| /**
 | |
|  * choose profile
 | |
|  */
 | |
| static int
 | |
| AccelSetProfileProperty(DeviceIntPtr dev, Atom atom,
 | |
|                         XIPropertyValuePtr val, BOOL checkOnly)
 | |
| {
 | |
|     DeviceVelocityPtr vel;
 | |
|     int profile, *ptr = &profile;
 | |
|     int rc;
 | |
|     int nelem = 1;
 | |
| 
 | |
|     if (atom != XIGetKnownProperty(ACCEL_PROP_PROFILE_NUMBER))
 | |
|         return Success;
 | |
| 
 | |
|     vel = GetDevicePredictableAccelData(dev);
 | |
|     if (!vel)
 | |
|         return BadValue;
 | |
|     rc = XIPropToInt(val, &nelem, &ptr);
 | |
| 
 | |
|     if (checkOnly) {
 | |
|         if (rc)
 | |
|             return rc;
 | |
| 
 | |
|         if (GetAccelerationProfile(vel, profile) == NULL)
 | |
|             return BadValue;
 | |
|     }
 | |
|     else
 | |
|         SetAccelerationProfile(vel, profile);
 | |
| 
 | |
|     return Success;
 | |
| }
 | |
| 
 | |
| static long
 | |
| AccelInitProfileProperty(DeviceIntPtr dev, DeviceVelocityPtr vel)
 | |
| {
 | |
|     int profile = vel->statistics.profile_number;
 | |
|     Atom prop_profile_number = XIGetKnownProperty(ACCEL_PROP_PROFILE_NUMBER);
 | |
| 
 | |
|     XIChangeDeviceProperty(dev, prop_profile_number, XA_INTEGER, 32,
 | |
|                            PropModeReplace, 1, &profile, FALSE);
 | |
|     XISetDevicePropertyDeletable(dev, prop_profile_number, FALSE);
 | |
|     return XIRegisterPropertyHandler(dev, AccelSetProfileProperty, NULL, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * constant deceleration
 | |
|  */
 | |
| static int
 | |
| AccelSetDecelProperty(DeviceIntPtr dev, Atom atom,
 | |
|                       XIPropertyValuePtr val, BOOL checkOnly)
 | |
| {
 | |
|     DeviceVelocityPtr vel;
 | |
|     float v, *ptr = &v;
 | |
|     int rc;
 | |
|     int nelem = 1;
 | |
| 
 | |
|     if (atom != XIGetKnownProperty(ACCEL_PROP_CONSTANT_DECELERATION))
 | |
|         return Success;
 | |
| 
 | |
|     vel = GetDevicePredictableAccelData(dev);
 | |
|     if (!vel)
 | |
|         return BadValue;
 | |
|     rc = XIPropToFloat(val, &nelem, &ptr);
 | |
| 
 | |
|     if (checkOnly) {
 | |
|         if (rc)
 | |
|             return rc;
 | |
|         return (v > 0) ? Success : BadValue;
 | |
|     }
 | |
| 
 | |
|     vel->const_acceleration = 1 / v;
 | |
| 
 | |
|     return Success;
 | |
| }
 | |
| 
 | |
| static long
 | |
| AccelInitDecelProperty(DeviceIntPtr dev, DeviceVelocityPtr vel)
 | |
| {
 | |
|     float fval = 1.0 / vel->const_acceleration;
 | |
|     Atom prop_const_decel =
 | |
|         XIGetKnownProperty(ACCEL_PROP_CONSTANT_DECELERATION);
 | |
|     XIChangeDeviceProperty(dev, prop_const_decel,
 | |
|                            XIGetKnownProperty(XATOM_FLOAT), 32, PropModeReplace,
 | |
|                            1, &fval, FALSE);
 | |
|     XISetDevicePropertyDeletable(dev, prop_const_decel, FALSE);
 | |
|     return XIRegisterPropertyHandler(dev, AccelSetDecelProperty, NULL, NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * adaptive deceleration
 | |
|  */
 | |
| static int
 | |
| AccelSetAdaptDecelProperty(DeviceIntPtr dev, Atom atom,
 | |
|                            XIPropertyValuePtr val, BOOL checkOnly)
 | |
| {
 | |
|     DeviceVelocityPtr veloc;
 | |
|     float v, *ptr = &v;
 | |
|     int rc;
 | |
|     int nelem = 1;
 | |
| 
 | |
|     if (atom != XIGetKnownProperty(ACCEL_PROP_ADAPTIVE_DECELERATION))
 | |
|         return Success;
 | |
| 
 | |
|     veloc = GetDevicePredictableAccelData(dev);
 | |
|     if (!veloc)
 | |
|         return BadValue;
 | |
|     rc = XIPropToFloat(val, &nelem, &ptr);
 | |
| 
 | |
|     if (checkOnly) {
 | |
|         if (rc)
 | |
|             return rc;
 | |
|         return (v >= 1.0f) ? Success : BadValue;
 | |
|     }
 | |
| 
 | |
|     if (v >= 1.0f)
 | |
|         veloc->min_acceleration = 1 / v;
 | |
| 
 | |
|     return Success;
 | |
| }
 | |
| 
 | |
| static long
 | |
| AccelInitAdaptDecelProperty(DeviceIntPtr dev, DeviceVelocityPtr vel)
 | |
| {
 | |
|     float fval = 1.0 / vel->min_acceleration;
 | |
|     Atom prop_adapt_decel =
 | |
|         XIGetKnownProperty(ACCEL_PROP_ADAPTIVE_DECELERATION);
 | |
| 
 | |
|     XIChangeDeviceProperty(dev, prop_adapt_decel,
 | |
|                            XIGetKnownProperty(XATOM_FLOAT), 32, PropModeReplace,
 | |
|                            1, &fval, FALSE);
 | |
|     XISetDevicePropertyDeletable(dev, prop_adapt_decel, FALSE);
 | |
|     return XIRegisterPropertyHandler(dev, AccelSetAdaptDecelProperty, NULL,
 | |
|                                      NULL);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * velocity scaling
 | |
|  */
 | |
| static int
 | |
| AccelSetScaleProperty(DeviceIntPtr dev, Atom atom,
 | |
|                       XIPropertyValuePtr val, BOOL checkOnly)
 | |
| {
 | |
|     DeviceVelocityPtr vel;
 | |
|     float v, *ptr = &v;
 | |
|     int rc;
 | |
|     int nelem = 1;
 | |
| 
 | |
|     if (atom != XIGetKnownProperty(ACCEL_PROP_VELOCITY_SCALING))
 | |
|         return Success;
 | |
| 
 | |
|     vel = GetDevicePredictableAccelData(dev);
 | |
|     if (!vel)
 | |
|         return BadValue;
 | |
|     rc = XIPropToFloat(val, &nelem, &ptr);
 | |
| 
 | |
|     if (checkOnly) {
 | |
|         if (rc)
 | |
|             return rc;
 | |
| 
 | |
|         return (v > 0) ? Success : BadValue;
 | |
|     }
 | |
| 
 | |
|     if (v > 0)
 | |
|         vel->corr_mul = v;
 | |
| 
 | |
|     return Success;
 | |
| }
 | |
| 
 | |
| static long
 | |
| AccelInitScaleProperty(DeviceIntPtr dev, DeviceVelocityPtr vel)
 | |
| {
 | |
|     float fval = vel->corr_mul;
 | |
|     Atom prop_velo_scale = XIGetKnownProperty(ACCEL_PROP_VELOCITY_SCALING);
 | |
| 
 | |
|     XIChangeDeviceProperty(dev, prop_velo_scale,
 | |
|                            XIGetKnownProperty(XATOM_FLOAT), 32, PropModeReplace,
 | |
|                            1, &fval, FALSE);
 | |
|     XISetDevicePropertyDeletable(dev, prop_velo_scale, FALSE);
 | |
|     return XIRegisterPropertyHandler(dev, AccelSetScaleProperty, NULL, NULL);
 | |
| }
 | |
| 
 | |
| static BOOL
 | |
| InitializePredictableAccelerationProperties(DeviceIntPtr dev,
 | |
|                                             DeviceVelocityPtr vel,
 | |
|                                             PredictableAccelSchemePtr
 | |
|                                             schemeData)
 | |
| {
 | |
|     int num_handlers = 4;
 | |
| 
 | |
|     if (!vel)
 | |
|         return FALSE;
 | |
| 
 | |
|     schemeData->prop_handlers = calloc(num_handlers, sizeof(long));
 | |
|     if (!schemeData->prop_handlers)
 | |
|         return FALSE;
 | |
|     schemeData->num_prop_handlers = num_handlers;
 | |
|     schemeData->prop_handlers[0] = AccelInitProfileProperty(dev, vel);
 | |
|     schemeData->prop_handlers[1] = AccelInitDecelProperty(dev, vel);
 | |
|     schemeData->prop_handlers[2] = AccelInitAdaptDecelProperty(dev, vel);
 | |
|     schemeData->prop_handlers[3] = AccelInitScaleProperty(dev, vel);
 | |
| 
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| BOOL
 | |
| DeletePredictableAccelerationProperties(DeviceIntPtr dev,
 | |
|                                         PredictableAccelSchemePtr scheme)
 | |
| {
 | |
|     DeviceVelocityPtr vel;
 | |
|     Atom prop;
 | |
|     int i;
 | |
| 
 | |
|     prop = XIGetKnownProperty(ACCEL_PROP_VELOCITY_SCALING);
 | |
|     XIDeleteDeviceProperty(dev, prop, FALSE);
 | |
|     prop = XIGetKnownProperty(ACCEL_PROP_ADAPTIVE_DECELERATION);
 | |
|     XIDeleteDeviceProperty(dev, prop, FALSE);
 | |
|     prop = XIGetKnownProperty(ACCEL_PROP_CONSTANT_DECELERATION);
 | |
|     XIDeleteDeviceProperty(dev, prop, FALSE);
 | |
|     prop = XIGetKnownProperty(ACCEL_PROP_PROFILE_NUMBER);
 | |
|     XIDeleteDeviceProperty(dev, prop, FALSE);
 | |
| 
 | |
|     vel = GetDevicePredictableAccelData(dev);
 | |
|     if (vel) {
 | |
|         for (i = 0; i < scheme->num_prop_handlers; i++)
 | |
|             if (scheme->prop_handlers[i])
 | |
|                 XIUnregisterPropertyHandler(dev, scheme->prop_handlers[i]);
 | |
|     }
 | |
| 
 | |
|     free(scheme->prop_handlers);
 | |
|     scheme->prop_handlers = NULL;
 | |
|     scheme->num_prop_handlers = 0;
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| /*********************
 | |
|  * Tracking logic
 | |
|  ********************/
 | |
| 
 | |
| void
 | |
| InitTrackers(DeviceVelocityPtr vel, int ntracker)
 | |
| {
 | |
|     if (ntracker < 1) {
 | |
|         ErrorF("invalid number of trackers\n");
 | |
|         return;
 | |
|     }
 | |
|     free(vel->tracker);
 | |
|     vel->tracker = (MotionTrackerPtr) calloc(ntracker, sizeof(MotionTracker));
 | |
|     vel->num_tracker = ntracker;
 | |
| }
 | |
| 
 | |
| enum directions {
 | |
|     N = (1 << 0),
 | |
|     NE = (1 << 1),
 | |
|     E = (1 << 2),
 | |
|     SE = (1 << 3),
 | |
|     S = (1 << 4),
 | |
|     SW = (1 << 5),
 | |
|     W = (1 << 6),
 | |
|     NW = (1 << 7),
 | |
|     UNDEFINED = 0xFF
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * return a bit field of possible directions.
 | |
|  * There's no reason against widening to more precise directions (<45 degrees),
 | |
|  * should it not perform well. All this is needed for is sort out non-linear
 | |
|  * motion, so precision isn't paramount. However, one should not flag direction
 | |
|  * too narrow, since it would then cut the linear segment to zero size way too
 | |
|  * often.
 | |
|  *
 | |
|  * @return A bitmask for N, NE, S, SE, etc. indicating the directions for
 | |
|  * this movement.
 | |
|  */
 | |
| static int
 | |
| DoGetDirection(int dx, int dy)
 | |
| {
 | |
|     int dir = 0;
 | |
| 
 | |
|     /* on insignificant mickeys, flag 135 degrees */
 | |
|     if (abs(dx) < 2 && abs(dy) < 2) {
 | |
|         /* first check diagonal cases */
 | |
|         if (dx > 0 && dy > 0)
 | |
|             dir = E | SE | S;
 | |
|         else if (dx > 0 && dy < 0)
 | |
|             dir = N | NE | E;
 | |
|         else if (dx < 0 && dy < 0)
 | |
|             dir = W | NW | N;
 | |
|         else if (dx < 0 && dy > 0)
 | |
|             dir = W | SW | S;
 | |
|         /* check axis-aligned directions */
 | |
|         else if (dx > 0)
 | |
|             dir = NE | E | SE;
 | |
|         else if (dx < 0)
 | |
|             dir = NW | W | SW;
 | |
|         else if (dy > 0)
 | |
|             dir = SE | S | SW;
 | |
|         else if (dy < 0)
 | |
|             dir = NE | N | NW;
 | |
|         else
 | |
|             dir = UNDEFINED;    /* shouldn't happen */
 | |
|     }
 | |
|     else {                      /* compute angle and set appropriate flags */
 | |
|         double r;
 | |
|         int i1, i2;
 | |
| 
 | |
|         r = atan2(dy, dx);
 | |
|         /* find direction.
 | |
|          *
 | |
|          * Add 360° to avoid r become negative since C has no well-defined
 | |
|          * modulo for such cases. Then divide by 45° to get the octant
 | |
|          * number,  e.g.
 | |
|          *          0 <= r <= 1 is [0-45]°
 | |
|          *          1 <= r <= 2 is [45-90]°
 | |
|          *          etc.
 | |
|          * But we add extra 90° to match up with our N, S, etc. defines up
 | |
|          * there, rest stays the same.
 | |
|          */
 | |
|         r = (r + (M_PI * 2.5)) / (M_PI / 4);
 | |
|         /* this intends to flag 2 directions (45 degrees),
 | |
|          * except on very well-aligned mickeys. */
 | |
|         i1 = (int) (r + 0.1) % 8;
 | |
|         i2 = (int) (r + 0.9) % 8;
 | |
|         if (i1 < 0 || i1 > 7 || i2 < 0 || i2 > 7)
 | |
|             dir = UNDEFINED;    /* shouldn't happen */
 | |
|         else
 | |
|             dir = (1 << i1 | 1 << i2);
 | |
|     }
 | |
|     return dir;
 | |
| }
 | |
| 
 | |
| #define DIRECTION_CACHE_RANGE 5
 | |
| #define DIRECTION_CACHE_SIZE (DIRECTION_CACHE_RANGE*2+1)
 | |
| 
 | |
| /* cache DoGetDirection().
 | |
|  * To avoid excessive use of direction calculation, cache the values for
 | |
|  * [-5..5] for both x/y. Anything outside of that is calculated on the fly.
 | |
|  *
 | |
|  * @return A bitmask for N, NE, S, SE, etc. indicating the directions for
 | |
|  * this movement.
 | |
|  */
 | |
| static int
 | |
| GetDirection(int dx, int dy)
 | |
| {
 | |
|     static int cache[DIRECTION_CACHE_SIZE][DIRECTION_CACHE_SIZE];
 | |
|     int dir;
 | |
| 
 | |
|     if (abs(dx) <= DIRECTION_CACHE_RANGE && abs(dy) <= DIRECTION_CACHE_RANGE) {
 | |
|         /* cacheable */
 | |
|         dir = cache[DIRECTION_CACHE_RANGE + dx][DIRECTION_CACHE_RANGE + dy];
 | |
|         if (dir == 0) {
 | |
|             dir = DoGetDirection(dx, dy);
 | |
|             cache[DIRECTION_CACHE_RANGE + dx][DIRECTION_CACHE_RANGE + dy] = dir;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         /* non-cacheable */
 | |
|         dir = DoGetDirection(dx, dy);
 | |
|     }
 | |
| 
 | |
|     return dir;
 | |
| }
 | |
| 
 | |
| #undef DIRECTION_CACHE_RANGE
 | |
| #undef DIRECTION_CACHE_SIZE
 | |
| 
 | |
| /* convert offset (age) to array index */
 | |
| #define TRACKER_INDEX(s, d) (((s)->num_tracker + (s)->cur_tracker - (d)) % (s)->num_tracker)
 | |
| #define TRACKER(s, d) &(s)->tracker[TRACKER_INDEX(s,d)]
 | |
| 
 | |
| /**
 | |
|  * Add the delta motion to each tracker, then reset the latest tracker to
 | |
|  * 0/0 and set it as the current one.
 | |
|  */
 | |
| static inline void
 | |
| FeedTrackers(DeviceVelocityPtr vel, double dx, double dy, int cur_t)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     for (n = 0; n < vel->num_tracker; n++) {
 | |
|         vel->tracker[n].dx += dx;
 | |
|         vel->tracker[n].dy += dy;
 | |
|     }
 | |
|     n = (vel->cur_tracker + 1) % vel->num_tracker;
 | |
|     vel->tracker[n].dx = 0.0;
 | |
|     vel->tracker[n].dy = 0.0;
 | |
|     vel->tracker[n].time = cur_t;
 | |
|     vel->tracker[n].dir = GetDirection(dx, dy);
 | |
|     DebugAccelF("motion [dx: %f dy: %f dir:%d diff: %d]\n",
 | |
|                 dx, dy, vel->tracker[n].dir,
 | |
|                 cur_t - vel->tracker[vel->cur_tracker].time);
 | |
|     vel->cur_tracker = n;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * calc velocity for given tracker, with
 | |
|  * velocity scaling.
 | |
|  * This assumes linear motion.
 | |
|  */
 | |
| static double
 | |
| CalcTracker(const MotionTracker * tracker, int cur_t)
 | |
| {
 | |
|     double dist = sqrt(tracker->dx * tracker->dx + tracker->dy * tracker->dy);
 | |
|     int dtime = cur_t - tracker->time;
 | |
| 
 | |
|     if (dtime > 0)
 | |
|         return dist / dtime;
 | |
|     else
 | |
|         return 0;               /* synonymous for NaN, since we're not C99 */
 | |
| }
 | |
| 
 | |
| /* find the most plausible velocity. That is, the most distant
 | |
|  * (in time) tracker which isn't too old, the movement vector was
 | |
|  * in the same octant, and where the velocity is within an
 | |
|  * acceptable range to the initial velocity.
 | |
|  *
 | |
|  * @return The tracker's velocity or 0 if the above conditions are unmet
 | |
|  */
 | |
| static double
 | |
| QueryTrackers(DeviceVelocityPtr vel, int cur_t)
 | |
| {
 | |
|     int offset, dir = UNDEFINED, used_offset = -1, age_ms;
 | |
| 
 | |
|     /* initial velocity: a low-offset, valid velocity */
 | |
|     double initial_velocity = 0, result = 0, velocity_diff;
 | |
|     double velocity_factor = vel->corr_mul * vel->const_acceleration;   /* premultiply */
 | |
| 
 | |
|     /* loop from current to older data */
 | |
|     for (offset = 1; offset < vel->num_tracker; offset++) {
 | |
|         MotionTracker *tracker = TRACKER(vel, offset);
 | |
|         double tracker_velocity;
 | |
| 
 | |
|         age_ms = cur_t - tracker->time;
 | |
| 
 | |
|         /* bail out if data is too old and protect from overrun */
 | |
|         if (age_ms >= vel->reset_time || age_ms < 0) {
 | |
|             DebugAccelF("query: tracker too old (reset after %d, age is %d)\n",
 | |
|                         vel->reset_time, age_ms);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * this heuristic avoids using the linear-motion velocity formula
 | |
|          * in CalcTracker() on motion that isn't exactly linear. So to get
 | |
|          * even more precision we could subdivide as a final step, so possible
 | |
|          * non-linearities are accounted for.
 | |
|          */
 | |
|         dir &= tracker->dir;
 | |
|         if (dir == 0) {         /* we've changed octant of movement (e.g. NE → NW) */
 | |
|             DebugAccelF("query: no longer linear\n");
 | |
|             /* instead of breaking it we might also inspect the partition after,
 | |
|              * but actual improvement with this is probably rare. */
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         tracker_velocity = CalcTracker(tracker, cur_t) * velocity_factor;
 | |
| 
 | |
|         if ((initial_velocity == 0 || offset <= vel->initial_range) &&
 | |
|             tracker_velocity != 0) {
 | |
|             /* set initial velocity and result */
 | |
|             result = initial_velocity = tracker_velocity;
 | |
|             used_offset = offset;
 | |
|         }
 | |
|         else if (initial_velocity != 0 && tracker_velocity != 0) {
 | |
|             velocity_diff = fabs(initial_velocity - tracker_velocity);
 | |
| 
 | |
|             if (velocity_diff > vel->max_diff &&
 | |
|                 velocity_diff / (initial_velocity + tracker_velocity) >=
 | |
|                 vel->max_rel_diff) {
 | |
|                 /* we're not in range, quit - it won't get better. */
 | |
|                 DebugAccelF("query: tracker too different:"
 | |
|                             " old %2.2f initial %2.2f diff: %2.2f\n",
 | |
|                             tracker_velocity, initial_velocity, velocity_diff);
 | |
|                 break;
 | |
|             }
 | |
|             /* we're in range with the initial velocity,
 | |
|              * so this result is likely better
 | |
|              * (it contains more information). */
 | |
|             result = tracker_velocity;
 | |
|             used_offset = offset;
 | |
|         }
 | |
|     }
 | |
|     if (offset == vel->num_tracker) {
 | |
|         DebugAccelF("query: last tracker in effect\n");
 | |
|         used_offset = vel->num_tracker - 1;
 | |
|     }
 | |
|     if (used_offset >= 0) {
 | |
| #ifdef PTRACCEL_DEBUGGING
 | |
|         MotionTracker *tracker = TRACKER(vel, used_offset);
 | |
| 
 | |
|         DebugAccelF("result: offset %i [dx: %f dy: %f diff: %i]\n",
 | |
|                     used_offset, tracker->dx, tracker->dy,
 | |
|                     cur_t - tracker->time);
 | |
| #endif
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| #undef TRACKER_INDEX
 | |
| #undef TRACKER
 | |
| 
 | |
| /**
 | |
|  * Perform velocity approximation based on 2D 'mickeys' (mouse motion delta).
 | |
|  * return true if non-visible state reset is suggested
 | |
|  */
 | |
| static BOOL ProcessVelocityData2D(DeviceVelocityPtr vel, double dx, double dy, int time)
 | |
| {
 | |
|     double velocity;
 | |
| 
 | |
|     vel->last_velocity = vel->velocity;
 | |
| 
 | |
|     FeedTrackers(vel, dx, dy, time);
 | |
| 
 | |
|     velocity = QueryTrackers(vel, time);
 | |
| 
 | |
|     DebugAccelF("velocity is %f\n", velocity);
 | |
| 
 | |
|     vel->velocity = velocity;
 | |
|     return velocity == 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * this flattens significant ( > 1) mickeys a little bit for more steady
 | |
|  * constant-velocity response
 | |
|  */
 | |
| static inline double
 | |
| ApplySimpleSoftening(double prev_delta, double delta)
 | |
| {
 | |
|     double result = delta;
 | |
| 
 | |
|     if (delta < -1.0 || delta > 1.0) {
 | |
|         if (delta > prev_delta)
 | |
|             result -= 0.5;
 | |
|         else if (delta < prev_delta)
 | |
|             result += 0.5;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Soften the delta based on previous deltas stored in vel.
 | |
|  *
 | |
|  * @param[in,out] fdx Delta X, modified in-place.
 | |
|  * @param[in,out] fdx Delta Y, modified in-place.
 | |
|  */
 | |
| static void
 | |
| ApplySoftening(DeviceVelocityPtr vel, double *fdx, double *fdy)
 | |
| {
 | |
|     if (vel->use_softening) {
 | |
|         *fdx = ApplySimpleSoftening(vel->last_dx, *fdx);
 | |
|         *fdy = ApplySimpleSoftening(vel->last_dy, *fdy);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void
 | |
| ApplyConstantDeceleration(DeviceVelocityPtr vel, double *fdx, double *fdy)
 | |
| {
 | |
|     *fdx *= vel->const_acceleration;
 | |
|     *fdy *= vel->const_acceleration;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * compute the acceleration for given velocity and enforce min_acceleration
 | |
|  */
 | |
| static double BasicComputeAcceleration(DeviceIntPtr dev,
 | |
|                                        DeviceVelocityPtr vel,
 | |
|                                        double velocity,
 | |
|                                        double threshold,
 | |
|                                        double acc)
 | |
| {
 | |
| 
 | |
|     double result;
 | |
| 
 | |
|     result = vel->Profile(dev, vel, velocity, threshold, acc);
 | |
| 
 | |
|     /* enforce min_acceleration */
 | |
|     if (result < vel->min_acceleration)
 | |
|         result = vel->min_acceleration;
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compute acceleration. Takes into account averaging, nv-reset, etc.
 | |
|  * If the velocity has changed, an average is taken of 6 velocity factors:
 | |
|  * current velocity, last velocity and 4 times the average between the two.
 | |
|  */
 | |
| static double
 | |
| ComputeAcceleration(DeviceIntPtr dev,
 | |
|                     DeviceVelocityPtr vel, double threshold, double acc)
 | |
| {
 | |
|     double result;
 | |
| 
 | |
|     if (vel->velocity <= 0) {
 | |
|         DebugAccelF("profile skipped\n");
 | |
|         /*
 | |
|          * If we have no idea about device velocity, don't pretend it.
 | |
|          */
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (vel->average_accel && vel->velocity != vel->last_velocity) {
 | |
|         /* use simpson's rule to average acceleration between
 | |
|          * current and previous velocity.
 | |
|          * Though being the more natural choice, it causes a minor delay
 | |
|          * in comparison, so it can be disabled. */
 | |
|         result =
 | |
|             BasicComputeAcceleration(dev, vel, vel->velocity, threshold, acc);
 | |
|         result +=
 | |
|             BasicComputeAcceleration(dev, vel, vel->last_velocity, threshold,
 | |
|                                      acc);
 | |
|         result +=
 | |
|             4.0 * BasicComputeAcceleration(dev, vel,
 | |
|                                             (vel->last_velocity +
 | |
|                                              vel->velocity) / 2,
 | |
|                                             threshold,
 | |
|                                             acc);
 | |
|         result /= 6.0;
 | |
|         DebugAccelF("profile average [%.2f ... %.2f] is %.3f\n",
 | |
|                     vel->velocity, vel->last_velocity, result);
 | |
|     }
 | |
|     else {
 | |
|         result = BasicComputeAcceleration(dev, vel,
 | |
|                                           vel->velocity, threshold, acc);
 | |
|         DebugAccelF("profile sample [%.2f] is %.3f\n",
 | |
|                     vel->velocity, result);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*****************************************
 | |
|  *  Acceleration functions and profiles
 | |
|  ****************************************/
 | |
| 
 | |
| /**
 | |
|  * Polynomial function similar previous one, but with f(1) = 1
 | |
|  */
 | |
| static double
 | |
| PolynomialAccelerationProfile(DeviceIntPtr dev,
 | |
|                               DeviceVelocityPtr vel,
 | |
|                               double velocity, double ignored, double acc)
 | |
| {
 | |
|     return pow(velocity, (acc - 1.0) * 0.5);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * returns acceleration for velocity.
 | |
|  * This profile selects the two functions like the old scheme did
 | |
|  */
 | |
| static double
 | |
| ClassicProfile(DeviceIntPtr dev,
 | |
|                DeviceVelocityPtr vel,
 | |
|                double velocity, double threshold, double acc)
 | |
| {
 | |
|     if (threshold > 0) {
 | |
|         return SimpleSmoothProfile(dev, vel, velocity, threshold, acc);
 | |
|     }
 | |
|     else {
 | |
|         return PolynomialAccelerationProfile(dev, vel, velocity, 0, acc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Power profile
 | |
|  * This has a completely smooth transition curve, i.e. no jumps in the
 | |
|  * derivatives.
 | |
|  *
 | |
|  * This has the expense of overall response dependency on min-acceleration.
 | |
|  * In effect, min_acceleration mimics const_acceleration in this profile.
 | |
|  */
 | |
| static double
 | |
| PowerProfile(DeviceIntPtr dev,
 | |
|              DeviceVelocityPtr vel,
 | |
|              double velocity, double threshold, double acc)
 | |
| {
 | |
|     double vel_dist;
 | |
| 
 | |
|     acc = (acc - 1.0) * 0.1 + 1.0;     /* without this, acc of 2 is unuseable */
 | |
| 
 | |
|     if (velocity <= threshold)
 | |
|         return vel->min_acceleration;
 | |
|     vel_dist = velocity - threshold;
 | |
|     return (pow(acc, vel_dist)) * vel->min_acceleration;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * just a smooth function in [0..1] -> [0..1]
 | |
|  *  - point symmetry at 0.5
 | |
|  *  - f'(0) = f'(1) = 0
 | |
|  *  - starts faster than a sinoid
 | |
|  *  - smoothness C1 (Cinf if you dare to ignore endpoints)
 | |
|  */
 | |
| static inline double
 | |
| CalcPenumbralGradient(double x)
 | |
| {
 | |
|     x *= 2.0;
 | |
|     x -= 1.0;
 | |
|     return 0.5 + (x * sqrt(1.0 - x * x) + asin(x)) / M_PI;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * acceleration function similar to classic accelerated/unaccelerated,
 | |
|  * but with smooth transition in between (and towards zero for adaptive dec.).
 | |
|  */
 | |
| static double
 | |
| SimpleSmoothProfile(DeviceIntPtr dev,
 | |
|                     DeviceVelocityPtr vel,
 | |
|                     double velocity, double threshold, double acc)
 | |
| {
 | |
|     if (velocity < 1.0f)
 | |
|         return CalcPenumbralGradient(0.5 + velocity * 0.5) * 2.0f - 1.0f;
 | |
|     if (threshold < 1.0f)
 | |
|         threshold = 1.0f;
 | |
|     if (velocity <= threshold)
 | |
|         return 1;
 | |
|     velocity /= threshold;
 | |
|     if (velocity >= acc)
 | |
|         return acc;
 | |
|     else
 | |
|         return 1.0f + (CalcPenumbralGradient(velocity / acc) * (acc - 1.0f));
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * This profile uses the first half of the penumbral gradient as a start
 | |
|  * and then scales linearly.
 | |
|  */
 | |
| static double
 | |
| SmoothLinearProfile(DeviceIntPtr dev,
 | |
|                     DeviceVelocityPtr vel,
 | |
|                     double velocity, double threshold, double acc)
 | |
| {
 | |
|     double res, nv;
 | |
| 
 | |
|     if (acc > 1.0)
 | |
|         acc -= 1.0;            /*this is so acc = 1 is no acceleration */
 | |
|     else
 | |
|         return 1.0;
 | |
| 
 | |
|     nv = (velocity - threshold) * acc * 0.5;
 | |
| 
 | |
|     if (nv < 0) {
 | |
|         res = 0;
 | |
|     }
 | |
|     else if (nv < 2) {
 | |
|         res = CalcPenumbralGradient(nv * 0.25) * 2.0;
 | |
|     }
 | |
|     else {
 | |
|         nv -= 2.0;
 | |
|         res = nv * 2.0 / M_PI  /* steepness of gradient at 0.5 */
 | |
|             + 1.0;             /* gradient crosses 2|1 */
 | |
|     }
 | |
|     res += vel->min_acceleration;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * From 0 to threshold, the response graduates smoothly from min_accel to
 | |
|  * acceleration. Beyond threshold it is exactly the specified acceleration.
 | |
|  */
 | |
| static double
 | |
| SmoothLimitedProfile(DeviceIntPtr dev,
 | |
|                      DeviceVelocityPtr vel,
 | |
|                      double velocity, double threshold, double acc)
 | |
| {
 | |
|     double res;
 | |
| 
 | |
|     if (velocity >= threshold || threshold == 0.0)
 | |
|         return acc;
 | |
| 
 | |
|     velocity /= threshold;      /* should be [0..1[ now */
 | |
| 
 | |
|     res = CalcPenumbralGradient(velocity) * (acc - vel->min_acceleration);
 | |
| 
 | |
|     return vel->min_acceleration + res;
 | |
| }
 | |
| 
 | |
| static double
 | |
| LinearProfile(DeviceIntPtr dev,
 | |
|               DeviceVelocityPtr vel,
 | |
|               double velocity, double threshold, double acc)
 | |
| {
 | |
|     return acc * velocity;
 | |
| }
 | |
| 
 | |
| static double
 | |
| NoProfile(DeviceIntPtr dev,
 | |
|           DeviceVelocityPtr vel, double velocity, double threshold, double acc)
 | |
| {
 | |
|     return 1.0;
 | |
| }
 | |
| 
 | |
| static PointerAccelerationProfileFunc
 | |
| GetAccelerationProfile(DeviceVelocityPtr vel, int profile_num)
 | |
| {
 | |
|     switch (profile_num) {
 | |
|     case AccelProfileClassic:
 | |
|         return ClassicProfile;
 | |
|     case AccelProfileDeviceSpecific:
 | |
|         return vel->deviceSpecificProfile;
 | |
|     case AccelProfilePolynomial:
 | |
|         return PolynomialAccelerationProfile;
 | |
|     case AccelProfileSmoothLinear:
 | |
|         return SmoothLinearProfile;
 | |
|     case AccelProfileSimple:
 | |
|         return SimpleSmoothProfile;
 | |
|     case AccelProfilePower:
 | |
|         return PowerProfile;
 | |
|     case AccelProfileLinear:
 | |
|         return LinearProfile;
 | |
|     case AccelProfileSmoothLimited:
 | |
|         return SmoothLimitedProfile;
 | |
|     case AccelProfileNone:
 | |
|         return NoProfile;
 | |
|     default:
 | |
|         return NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Set the profile by number.
 | |
|  * Intended to make profiles exchangeable at runtime.
 | |
|  * If you created a profile, give it a number here and in the header to
 | |
|  * make it selectable. In case some profile-specific init is needed, here
 | |
|  * would be a good place, since FreeVelocityData() also calls this with
 | |
|  * PROFILE_UNINITIALIZE.
 | |
|  *
 | |
|  * returns FALSE if profile number is unavailable, TRUE otherwise.
 | |
|  */
 | |
| static int SetAccelerationProfile(DeviceVelocityPtr vel, int profile_num)
 | |
| {
 | |
|     PointerAccelerationProfileFunc profile;
 | |
| 
 | |
|     profile = GetAccelerationProfile(vel, profile_num);
 | |
| 
 | |
|     if (profile == NULL && profile_num != PROFILE_UNINITIALIZE)
 | |
|         return FALSE;
 | |
| 
 | |
|     /* Here one could free old profile-private data */
 | |
|     free(vel->profile_private);
 | |
|     vel->profile_private = NULL;
 | |
|     /* Here one could init profile-private data */
 | |
|     vel->Profile = profile;
 | |
|     vel->statistics.profile_number = profile_num;
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| /**********************************************
 | |
|  * driver interaction
 | |
|  **********************************************/
 | |
| 
 | |
| /**
 | |
|  * device-specific profile
 | |
|  *
 | |
|  * The device-specific profile is intended as a hook for a driver
 | |
|  * which may want to provide an own acceleration profile.
 | |
|  * It should not rely on profile-private data, instead
 | |
|  * it should do init/uninit in the driver (ie. with DEVICE_INIT and friends).
 | |
|  * Users may override or choose it.
 | |
|  */
 | |
| void
 | |
| SetDeviceSpecificAccelerationProfile(DeviceVelocityPtr vel,
 | |
|                                      PointerAccelerationProfileFunc profile)
 | |
| {
 | |
|     if (vel)
 | |
|         vel->deviceSpecificProfile = profile;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Use this function to obtain a DeviceVelocityPtr for a device. Will return NULL if
 | |
|  * the predictable acceleration scheme is not in effect.
 | |
|  */
 | |
| DeviceVelocityPtr
 | |
| GetDevicePredictableAccelData(DeviceIntPtr dev)
 | |
| {
 | |
|     BUG_RETURN_VAL(!dev, NULL);
 | |
| 
 | |
|     if (dev->valuator &&
 | |
|         dev->valuator->accelScheme.AccelSchemeProc ==
 | |
|         acceleratePointerPredictable &&
 | |
|         dev->valuator->accelScheme.accelData != NULL) {
 | |
| 
 | |
|         return ((PredictableAccelSchemePtr)
 | |
|                 dev->valuator->accelScheme.accelData)->vel;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /********************************
 | |
|  *  acceleration schemes
 | |
|  *******************************/
 | |
| 
 | |
| /**
 | |
|  * Modifies valuators in-place.
 | |
|  * This version employs a velocity approximation algorithm to
 | |
|  * enable fine-grained predictable acceleration profiles.
 | |
|  */
 | |
| void
 | |
| acceleratePointerPredictable(DeviceIntPtr dev, ValuatorMask *val, CARD32 evtime)
 | |
| {
 | |
|     double dx = 0, dy = 0;
 | |
|     DeviceVelocityPtr velocitydata = GetDevicePredictableAccelData(dev);
 | |
|     Bool soften = TRUE;
 | |
| 
 | |
|     if (valuator_mask_num_valuators(val) == 0 || !velocitydata)
 | |
|         return;
 | |
| 
 | |
|     if (velocitydata->statistics.profile_number == AccelProfileNone &&
 | |
|         velocitydata->const_acceleration == 1.0) {
 | |
|         return;                 /*we're inactive anyway, so skip the whole thing. */
 | |
|     }
 | |
| 
 | |
|     if (valuator_mask_isset(val, 0)) {
 | |
|         dx = valuator_mask_get_double(val, 0);
 | |
|     }
 | |
| 
 | |
|     if (valuator_mask_isset(val, 1)) {
 | |
|         dy = valuator_mask_get_double(val, 1);
 | |
|     }
 | |
| 
 | |
|     if (dx != 0.0 || dy != 0.0) {
 | |
|         /* reset non-visible state? */
 | |
|         if (ProcessVelocityData2D(velocitydata, dx, dy, evtime)) {
 | |
|             soften = FALSE;
 | |
|         }
 | |
| 
 | |
|         if (dev->ptrfeed && dev->ptrfeed->ctrl.num) {
 | |
|             double mult;
 | |
| 
 | |
|             /* invoke acceleration profile to determine acceleration */
 | |
|             mult = ComputeAcceleration(dev, velocitydata,
 | |
|                                        dev->ptrfeed->ctrl.threshold,
 | |
|                                        (double) dev->ptrfeed->ctrl.num /
 | |
|                                        (double) dev->ptrfeed->ctrl.den);
 | |
| 
 | |
|             DebugAccelF("mult is %f\n", mult);
 | |
|             if (mult != 1.0 || velocitydata->const_acceleration != 1.0) {
 | |
|                 if (mult > 1.0 && soften)
 | |
|                     ApplySoftening(velocitydata, &dx, &dy);
 | |
|                 ApplyConstantDeceleration(velocitydata, &dx, &dy);
 | |
| 
 | |
|                 if (dx != 0.0)
 | |
|                     valuator_mask_set_double(val, 0, mult * dx);
 | |
|                 if (dy != 0.0)
 | |
|                     valuator_mask_set_double(val, 1, mult * dy);
 | |
|                 DebugAccelF("delta x:%.3f y:%.3f\n", mult * dx, mult * dy);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     /* remember last motion delta (for softening/slow movement treatment) */
 | |
|     velocitydata->last_dx = dx;
 | |
|     velocitydata->last_dy = dy;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Originally a part of xf86PostMotionEvent; modifies valuators
 | |
|  * in-place. Retained mostly for embedded scenarios.
 | |
|  */
 | |
| void
 | |
| acceleratePointerLightweight(DeviceIntPtr dev,
 | |
|                              ValuatorMask *val, CARD32 ignored)
 | |
| {
 | |
|     double mult = 0.0, tmpf;
 | |
|     double dx = 0.0, dy = 0.0;
 | |
| 
 | |
|     if (valuator_mask_isset(val, 0)) {
 | |
|         dx = valuator_mask_get(val, 0);
 | |
|     }
 | |
| 
 | |
|     if (valuator_mask_isset(val, 1)) {
 | |
|         dy = valuator_mask_get(val, 1);
 | |
|     }
 | |
| 
 | |
|     if (valuator_mask_num_valuators(val) == 0)
 | |
|         return;
 | |
| 
 | |
|     if (dev->ptrfeed && dev->ptrfeed->ctrl.num) {
 | |
|         /* modeled from xf86Events.c */
 | |
|         if (dev->ptrfeed->ctrl.threshold) {
 | |
|             if ((fabs(dx) + fabs(dy)) >= dev->ptrfeed->ctrl.threshold) {
 | |
|                 if (dx != 0.0) {
 | |
|                     tmpf = (dx * (double) (dev->ptrfeed->ctrl.num)) /
 | |
|                         (double) (dev->ptrfeed->ctrl.den);
 | |
|                     valuator_mask_set_double(val, 0, tmpf);
 | |
|                 }
 | |
| 
 | |
|                 if (dy != 0.0) {
 | |
|                     tmpf = (dy * (double) (dev->ptrfeed->ctrl.num)) /
 | |
|                         (double) (dev->ptrfeed->ctrl.den);
 | |
|                     valuator_mask_set_double(val, 1, tmpf);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             mult = pow(dx * dx + dy * dy,
 | |
|                        ((double) (dev->ptrfeed->ctrl.num) /
 | |
|                         (double) (dev->ptrfeed->ctrl.den) - 1.0) / 2.0) / 2.0;
 | |
|             if (dx != 0.0)
 | |
|                 valuator_mask_set_double(val, 0, mult * dx);
 | |
|             if (dy != 0.0)
 | |
|                 valuator_mask_set_double(val, 1, mult * dy);
 | |
|         }
 | |
|     }
 | |
| }
 |