721 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			721 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
| /***********************************************************
 | |
| 
 | |
| Copyright 1987, 1998  The Open Group
 | |
| 
 | |
| Permission to use, copy, modify, distribute, and sell this software and its
 | |
| documentation for any purpose is hereby granted without fee, provided that
 | |
| the above copyright notice appear in all copies and that both that
 | |
| copyright notice and this permission notice appear in supporting
 | |
| documentation.
 | |
| 
 | |
| The above copyright notice and this permission notice shall be included in
 | |
| all copies or substantial portions of the Software.
 | |
| 
 | |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 | |
| OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 | |
| AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 | |
| CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 | |
| 
 | |
| Except as contained in this notice, the name of The Open Group shall not be
 | |
| used in advertising or otherwise to promote the sale, use or other dealings
 | |
| in this Software without prior written authorization from The Open Group.
 | |
| 
 | |
| Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts.
 | |
| 
 | |
|                         All Rights Reserved
 | |
| 
 | |
| Permission to use, copy, modify, and distribute this software and its
 | |
| documentation for any purpose and without fee is hereby granted,
 | |
| provided that the above copyright notice appear in all copies and that
 | |
| both that copyright notice and this permission notice appear in
 | |
| supporting documentation, and that the name of Digital not be
 | |
| used in advertising or publicity pertaining to distribution of the
 | |
| software without specific, written prior permission.
 | |
| 
 | |
| DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING
 | |
| ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
 | |
| DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR
 | |
| ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
 | |
| WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
 | |
| ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
 | |
| SOFTWARE.
 | |
| 
 | |
| ******************************************************************/
 | |
| /*
 | |
|  *  mipoly.c
 | |
|  *
 | |
|  *  Written by Brian Kelleher; June 1986
 | |
|  */
 | |
| #include <dix-config.h>
 | |
| 
 | |
| #include <X11/X.h>
 | |
| #include "windowstr.h"
 | |
| #include "gcstruct.h"
 | |
| #include "pixmapstr.h"
 | |
| #include "mi.h"
 | |
| #include "miscanfill.h"
 | |
| #include "mipoly.h"
 | |
| #include "regionstr.h"
 | |
| 
 | |
| /*
 | |
|  * Insert the given edge into the edge table.  First we must find the correct
 | |
|  * bucket in the Edge table, then find the right slot in the bucket.  Finally,
 | |
|  * we can insert it.
 | |
|  */
 | |
| static Bool
 | |
| miInsertEdgeInET(EdgeTable * ET, EdgeTableEntry * ETE, int scanline,
 | |
|                  ScanLineListBlock ** SLLBlock, int *iSLLBlock)
 | |
| {
 | |
|     EdgeTableEntry *start, *prev;
 | |
|     ScanLineList *pSLL, *pPrevSLL;
 | |
|     ScanLineListBlock *tmpSLLBlock;
 | |
| 
 | |
|     /*
 | |
|      * find the right bucket to put the edge into
 | |
|      */
 | |
|     pPrevSLL = &ET->scanlines;
 | |
|     pSLL = pPrevSLL->next;
 | |
|     while (pSLL && (pSLL->scanline < scanline)) {
 | |
|         pPrevSLL = pSLL;
 | |
|         pSLL = pSLL->next;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * reassign pSLL (pointer to ScanLineList) if necessary
 | |
|      */
 | |
|     if ((!pSLL) || (pSLL->scanline > scanline)) {
 | |
|         if (*iSLLBlock > SLLSPERBLOCK - 1) {
 | |
|             tmpSLLBlock = malloc(sizeof(ScanLineListBlock));
 | |
|             if (!tmpSLLBlock)
 | |
|                 return FALSE;
 | |
|             (*SLLBlock)->next = tmpSLLBlock;
 | |
|             tmpSLLBlock->next = NULL;
 | |
|             *SLLBlock = tmpSLLBlock;
 | |
|             *iSLLBlock = 0;
 | |
|         }
 | |
|         pSLL = &((*SLLBlock)->SLLs[(*iSLLBlock)++]);
 | |
| 
 | |
|         pSLL->next = pPrevSLL->next;
 | |
|         pSLL->edgelist = NULL;
 | |
|         pPrevSLL->next = pSLL;
 | |
|     }
 | |
|     pSLL->scanline = scanline;
 | |
| 
 | |
|     /*
 | |
|      * now insert the edge in the right bucket
 | |
|      */
 | |
|     prev = NULL;
 | |
|     start = pSLL->edgelist;
 | |
|     while (start && (start->bres.minor < ETE->bres.minor)) {
 | |
|         prev = start;
 | |
|         start = start->next;
 | |
|     }
 | |
|     ETE->next = start;
 | |
| 
 | |
|     if (prev)
 | |
|         prev->next = ETE;
 | |
|     else
 | |
|         pSLL->edgelist = ETE;
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| static void
 | |
| miFreeStorage(ScanLineListBlock * pSLLBlock)
 | |
| {
 | |
|     ScanLineListBlock *tmpSLLBlock;
 | |
| 
 | |
|     while (pSLLBlock) {
 | |
|         tmpSLLBlock = pSLLBlock->next;
 | |
|         free(pSLLBlock);
 | |
|         pSLLBlock = tmpSLLBlock;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CreateEdgeTable
 | |
|  *
 | |
|  * This routine creates the edge table for scan converting polygons.
 | |
|  * The Edge Table (ET) looks like:
 | |
|  *
 | |
|  * EdgeTable
 | |
|  *  --------
 | |
|  * |  ymax  |        ScanLineLists
 | |
|  * |scanline|-->------------>-------------->...
 | |
|  *  --------   |scanline|   |scanline|
 | |
|  *             |edgelist|   |edgelist|
 | |
|  *             ---------    ---------
 | |
|  *                 |             |
 | |
|  *                 |             |
 | |
|  *                 V             V
 | |
|  *           list of ETEs   list of ETEs
 | |
|  *
 | |
|  * where ETE is an EdgeTableEntry data structure, and there is one ScanLineList
 | |
|  * per scanline at which an edge is initially entered.
 | |
|  */
 | |
| 
 | |
| static Bool
 | |
| miCreateETandAET(int count, DDXPointPtr pts, EdgeTable * ET,
 | |
|                  EdgeTableEntry * AET, EdgeTableEntry * pETEs,
 | |
|                  ScanLineListBlock * pSLLBlock)
 | |
| {
 | |
|     DDXPointPtr top, bottom;
 | |
|     DDXPointPtr PrevPt, CurrPt;
 | |
|     int iSLLBlock = 0;
 | |
| 
 | |
|     int dy;
 | |
| 
 | |
|     if (count < 2)
 | |
|         return TRUE;
 | |
| 
 | |
|     /*
 | |
|      *  initialize the Active Edge Table
 | |
|      */
 | |
|     AET->next = NULL;
 | |
|     AET->back = NULL;
 | |
|     AET->nextWETE = NULL;
 | |
|     AET->bres.minor = MININT;
 | |
| 
 | |
|     /*
 | |
|      *  initialize the Edge Table.
 | |
|      */
 | |
|     ET->scanlines.next = NULL;
 | |
|     ET->ymax = MININT;
 | |
|     ET->ymin = MAXINT;
 | |
|     pSLLBlock->next = NULL;
 | |
| 
 | |
|     PrevPt = &pts[count - 1];
 | |
| 
 | |
|     /*
 | |
|      *  for each vertex in the array of points.
 | |
|      *  In this loop we are dealing with two vertices at
 | |
|      *  a time -- these make up one edge of the polygon.
 | |
|      */
 | |
|     while (count--) {
 | |
|         CurrPt = pts++;
 | |
| 
 | |
|         /*
 | |
|          *  find out which point is above and which is below.
 | |
|          */
 | |
|         if (PrevPt->y > CurrPt->y) {
 | |
|             bottom = PrevPt, top = CurrPt;
 | |
|             pETEs->ClockWise = 0;
 | |
|         }
 | |
|         else {
 | |
|             bottom = CurrPt, top = PrevPt;
 | |
|             pETEs->ClockWise = 1;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * don't add horizontal edges to the Edge table.
 | |
|          */
 | |
|         if (bottom->y != top->y) {
 | |
|             pETEs->ymax = bottom->y - 1; /* -1 so we don't get last scanline */
 | |
| 
 | |
|             /*
 | |
|              *  initialize integer edge algorithm
 | |
|              */
 | |
|             dy = bottom->y - top->y;
 | |
|             BRESINITPGONSTRUCT(dy, top->x, bottom->x, pETEs->bres);
 | |
| 
 | |
|             if (!miInsertEdgeInET(ET, pETEs, top->y, &pSLLBlock, &iSLLBlock)) {
 | |
|                 miFreeStorage(pSLLBlock->next);
 | |
|                 return FALSE;
 | |
|             }
 | |
| 
 | |
|             ET->ymax = max(ET->ymax, PrevPt->y);
 | |
|             ET->ymin = min(ET->ymin, PrevPt->y);
 | |
|             pETEs++;
 | |
|         }
 | |
| 
 | |
|         PrevPt = CurrPt;
 | |
|     }
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This routine moves EdgeTableEntries from the EdgeTable into the Active Edge
 | |
|  * Table, leaving them sorted by smaller x coordinate.
 | |
|  */
 | |
| 
 | |
| static void
 | |
| miloadAET(EdgeTableEntry * AET, EdgeTableEntry * ETEs)
 | |
| {
 | |
|     EdgeTableEntry *pPrevAET;
 | |
|     EdgeTableEntry *tmp;
 | |
| 
 | |
|     pPrevAET = AET;
 | |
|     AET = AET->next;
 | |
|     while (ETEs) {
 | |
|         while (AET && (AET->bres.minor < ETEs->bres.minor)) {
 | |
|             pPrevAET = AET;
 | |
|             AET = AET->next;
 | |
|         }
 | |
|         tmp = ETEs->next;
 | |
|         ETEs->next = AET;
 | |
|         if (AET)
 | |
|             AET->back = ETEs;
 | |
|         ETEs->back = pPrevAET;
 | |
|         pPrevAET->next = ETEs;
 | |
|         pPrevAET = ETEs;
 | |
| 
 | |
|         ETEs = tmp;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * computeWAET
 | |
|  *
 | |
|  * This routine links the AET by the nextWETE (winding EdgeTableEntry) link for
 | |
|  * use by the winding number rule.  The final Active Edge Table (AET) might
 | |
|  * look something like:
 | |
|  *
 | |
|  * AET
 | |
|  * ----------  ---------   ---------
 | |
|  * |ymax    |  |ymax    |  |ymax    |
 | |
|  * | ...    |  |...     |  |...     |
 | |
|  * |next    |->|next    |->|next    |->...
 | |
|  * |nextWETE|  |nextWETE|  |nextWETE|
 | |
|  * ---------   ---------   ^--------
 | |
|  *     |                   |       |
 | |
|  *     V------------------->       V---> ...
 | |
|  *
 | |
|  */
 | |
| static void
 | |
| micomputeWAET(EdgeTableEntry * AET)
 | |
| {
 | |
|     EdgeTableEntry *pWETE;
 | |
|     int inside = 1;
 | |
|     int isInside = 0;
 | |
| 
 | |
|     AET->nextWETE = NULL;
 | |
|     pWETE = AET;
 | |
|     AET = AET->next;
 | |
|     while (AET) {
 | |
|         if (AET->ClockWise)
 | |
|             isInside++;
 | |
|         else
 | |
|             isInside--;
 | |
| 
 | |
|         if ((!inside && !isInside) || (inside && isInside)) {
 | |
|             pWETE->nextWETE = AET;
 | |
|             pWETE = AET;
 | |
|             inside = !inside;
 | |
|         }
 | |
|         AET = AET->next;
 | |
|     }
 | |
|     pWETE->nextWETE = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Just a simple insertion sort using pointers and back pointers to sort the
 | |
|  * Active Edge Table.
 | |
|  */
 | |
| 
 | |
| static int
 | |
| miInsertionSort(EdgeTableEntry * AET)
 | |
| {
 | |
|     EdgeTableEntry *pETEchase;
 | |
|     EdgeTableEntry *pETEinsert;
 | |
|     EdgeTableEntry *pETEchaseBackTMP;
 | |
|     int changed = 0;
 | |
| 
 | |
|     AET = AET->next;
 | |
|     while (AET) {
 | |
|         pETEinsert = AET;
 | |
|         pETEchase = AET;
 | |
|         while (pETEchase->back->bres.minor > AET->bres.minor)
 | |
|             pETEchase = pETEchase->back;
 | |
| 
 | |
|         AET = AET->next;
 | |
|         if (pETEchase != pETEinsert) {
 | |
|             pETEchaseBackTMP = pETEchase->back;
 | |
|             pETEinsert->back->next = AET;
 | |
|             if (AET)
 | |
|                 AET->back = pETEinsert->back;
 | |
|             pETEinsert->next = pETEchase;
 | |
|             pETEchase->back->next = pETEinsert;
 | |
|             pETEchase->back = pETEinsert;
 | |
|             pETEinsert->back = pETEchaseBackTMP;
 | |
|             changed = 1;
 | |
|         }
 | |
|     }
 | |
|     return changed;
 | |
| }
 | |
| 
 | |
| /* Find the index of the point with the smallest y */
 | |
| static int
 | |
| getPolyYBounds(DDXPointPtr pts, int n, int *by, int *ty)
 | |
| {
 | |
|     DDXPointPtr ptMin;
 | |
|     int ymin, ymax;
 | |
|     DDXPointPtr ptsStart = pts;
 | |
| 
 | |
|     ptMin = pts;
 | |
|     ymin = ymax = (pts++)->y;
 | |
| 
 | |
|     while (--n > 0) {
 | |
|         if (pts->y < ymin) {
 | |
|             ptMin = pts;
 | |
|             ymin = pts->y;
 | |
|         }
 | |
|         if (pts->y > ymax)
 | |
|             ymax = pts->y;
 | |
| 
 | |
|         pts++;
 | |
|     }
 | |
| 
 | |
|     *by = ymin;
 | |
|     *ty = ymax;
 | |
|     return ptMin - ptsStart;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Written by Brian Kelleher; Dec. 1985.
 | |
|  *
 | |
|  * Fill a convex polygon.  If the given polygon is not convex, then the result
 | |
|  * is undefined.  The algorithm is to order the edges from smallest y to
 | |
|  * largest by partitioning the array into a left edge list and a right edge
 | |
|  * list.  The algorithm used to traverse each edge is an extension of
 | |
|  * Bresenham's line algorithm with y as the major axis.  For a derivation of
 | |
|  * the algorithm, see the author of this code.
 | |
|  */
 | |
| static Bool
 | |
| miFillConvexPoly(DrawablePtr dst, GCPtr pgc, int count, DDXPointPtr ptsIn)
 | |
| {
 | |
|     int xl = 0, xr = 0;         /* x vals of left and right edges */
 | |
|     int dl = 0, dr = 0;         /* decision variables             */
 | |
|     int ml = 0, m1l = 0;        /* left edge slope and slope+1    */
 | |
|     int mr = 0, m1r = 0;        /* right edge slope and slope+1   */
 | |
|     int incr1l = 0, incr2l = 0; /* left edge error increments     */
 | |
|     int incr1r = 0, incr2r = 0; /* right edge error increments    */
 | |
|     int dy;                     /* delta y                        */
 | |
|     int y;                      /* current scanline               */
 | |
|     int left, right;            /* indices to first endpoints     */
 | |
|     int i;                      /* loop counter                   */
 | |
|     int nextleft, nextright;    /* indices to second endpoints    */
 | |
|     DDXPointPtr ptsOut, FirstPoint;     /* output buffer               */
 | |
|     int *width, *FirstWidth;    /* output buffer                  */
 | |
|     int imin;                   /* index of smallest vertex (in y) */
 | |
|     int ymin;                   /* y-extents of polygon            */
 | |
|     int ymax;
 | |
| 
 | |
|     /*
 | |
|      *  find leftx, bottomy, rightx, topy, and the index
 | |
|      *  of bottomy. Also translate the points.
 | |
|      */
 | |
|     imin = getPolyYBounds(ptsIn, count, &ymin, &ymax);
 | |
| 
 | |
|     dy = ymax - ymin + 1;
 | |
|     if ((count < 3) || (dy < 0))
 | |
|         return TRUE;
 | |
|     ptsOut = FirstPoint = xallocarray(dy, sizeof(DDXPointRec));
 | |
|     width = FirstWidth = xallocarray(dy, sizeof(int));
 | |
|     if (!FirstPoint || !FirstWidth) {
 | |
|         free(FirstWidth);
 | |
|         free(FirstPoint);
 | |
|         return FALSE;
 | |
|     }
 | |
| 
 | |
|     nextleft = nextright = imin;
 | |
|     y = ptsIn[nextleft].y;
 | |
| 
 | |
|     /*
 | |
|      *  loop through all edges of the polygon
 | |
|      */
 | |
|     do {
 | |
|         /*
 | |
|          *  add a left edge if we need to
 | |
|          */
 | |
|         if (ptsIn[nextleft].y == y) {
 | |
|             left = nextleft;
 | |
| 
 | |
|             /*
 | |
|              *  find the next edge, considering the end
 | |
|              *  conditions of the array.
 | |
|              */
 | |
|             nextleft++;
 | |
|             if (nextleft >= count)
 | |
|                 nextleft = 0;
 | |
| 
 | |
|             /*
 | |
|              *  now compute all of the random information
 | |
|              *  needed to run the iterative algorithm.
 | |
|              */
 | |
|             BRESINITPGON(ptsIn[nextleft].y - ptsIn[left].y,
 | |
|                          ptsIn[left].x, ptsIn[nextleft].x,
 | |
|                          xl, dl, ml, m1l, incr1l, incr2l);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          *  add a right edge if we need to
 | |
|          */
 | |
|         if (ptsIn[nextright].y == y) {
 | |
|             right = nextright;
 | |
| 
 | |
|             /*
 | |
|              *  find the next edge, considering the end
 | |
|              *  conditions of the array.
 | |
|              */
 | |
|             nextright--;
 | |
|             if (nextright < 0)
 | |
|                 nextright = count - 1;
 | |
| 
 | |
|             /*
 | |
|              *  now compute all of the random information
 | |
|              *  needed to run the iterative algorithm.
 | |
|              */
 | |
|             BRESINITPGON(ptsIn[nextright].y - ptsIn[right].y,
 | |
|                          ptsIn[right].x, ptsIn[nextright].x,
 | |
|                          xr, dr, mr, m1r, incr1r, incr2r);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          *  generate scans to fill while we still have
 | |
|          *  a right edge as well as a left edge.
 | |
|          */
 | |
|         i = min(ptsIn[nextleft].y, ptsIn[nextright].y) - y;
 | |
|         /* in case we're called with non-convex polygon */
 | |
|         if (i < 0) {
 | |
|             free(FirstWidth);
 | |
|             free(FirstPoint);
 | |
|             return TRUE;
 | |
|         }
 | |
|         while (i-- > 0) {
 | |
|             ptsOut->y = y;
 | |
| 
 | |
|             /*
 | |
|              *  reverse the edges if necessary
 | |
|              */
 | |
|             if (xl < xr) {
 | |
|                 *(width++) = xr - xl;
 | |
|                 (ptsOut++)->x = xl;
 | |
|             }
 | |
|             else {
 | |
|                 *(width++) = xl - xr;
 | |
|                 (ptsOut++)->x = xr;
 | |
|             }
 | |
|             y++;
 | |
| 
 | |
|             /* increment down the edges */
 | |
|             BRESINCRPGON(dl, xl, ml, m1l, incr1l, incr2l);
 | |
|             BRESINCRPGON(dr, xr, mr, m1r, incr1r, incr2r);
 | |
|         }
 | |
|     } while (y != ymax);
 | |
| 
 | |
|     /*
 | |
|      * Finally, fill the <remaining> spans
 | |
|      */
 | |
|     (*pgc->ops->FillSpans) (dst, pgc,
 | |
|                             ptsOut - FirstPoint, FirstPoint, FirstWidth, 1);
 | |
|     free(FirstWidth);
 | |
|     free(FirstPoint);
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Written by Brian Kelleher;  Oct. 1985
 | |
|  *
 | |
|  * Routine to fill a polygon.  Two fill rules are supported: frWINDING and
 | |
|  * frEVENODD.
 | |
|  */
 | |
| static Bool
 | |
| miFillGeneralPoly(DrawablePtr dst, GCPtr pgc, int count, DDXPointPtr ptsIn)
 | |
| {
 | |
|     EdgeTableEntry *pAET;       /* the Active Edge Table   */
 | |
|     int y;                      /* the current scanline    */
 | |
|     int nPts = 0;               /* number of pts in buffer */
 | |
|     EdgeTableEntry *pWETE;      /* Winding Edge Table      */
 | |
|     ScanLineList *pSLL;         /* Current ScanLineList    */
 | |
|     DDXPointPtr ptsOut;         /* ptr to output buffers   */
 | |
|     int *width;
 | |
|     DDXPointRec FirstPoint[NUMPTSTOBUFFER];     /* the output buffers */
 | |
|     int FirstWidth[NUMPTSTOBUFFER];
 | |
|     EdgeTableEntry *pPrevAET;   /* previous AET entry      */
 | |
|     EdgeTable ET;               /* Edge Table header node  */
 | |
|     EdgeTableEntry AET;         /* Active ET header node   */
 | |
|     EdgeTableEntry *pETEs;      /* Edge Table Entries buff */
 | |
|     ScanLineListBlock SLLBlock; /* header for ScanLineList */
 | |
|     int fixWAET = 0;
 | |
| 
 | |
|     if (count < 3)
 | |
|         return TRUE;
 | |
| 
 | |
|     if (!(pETEs = malloc(sizeof(EdgeTableEntry) * count)))
 | |
|         return FALSE;
 | |
|     ptsOut = FirstPoint;
 | |
|     width = FirstWidth;
 | |
|     if (!miCreateETandAET(count, ptsIn, &ET, &AET, pETEs, &SLLBlock)) {
 | |
|         free(pETEs);
 | |
|         return FALSE;
 | |
|     }
 | |
|     pSLL = ET.scanlines.next;
 | |
| 
 | |
|     if (pgc->fillRule == EvenOddRule) {
 | |
|         /*
 | |
|          *  for each scanline
 | |
|          */
 | |
|         for (y = ET.ymin; y < ET.ymax; y++) {
 | |
|             /*
 | |
|              *  Add a new edge to the active edge table when we
 | |
|              *  get to the next edge.
 | |
|              */
 | |
|             if (pSLL && y == pSLL->scanline) {
 | |
|                 miloadAET(&AET, pSLL->edgelist);
 | |
|                 pSLL = pSLL->next;
 | |
|             }
 | |
|             pPrevAET = &AET;
 | |
|             pAET = AET.next;
 | |
| 
 | |
|             /*
 | |
|              *  for each active edge
 | |
|              */
 | |
|             while (pAET) {
 | |
|                 ptsOut->x = pAET->bres.minor;
 | |
|                 ptsOut++->y = y;
 | |
|                 *width++ = pAET->next->bres.minor - pAET->bres.minor;
 | |
|                 nPts++;
 | |
| 
 | |
|                 /*
 | |
|                  *  send out the buffer when its full
 | |
|                  */
 | |
|                 if (nPts == NUMPTSTOBUFFER) {
 | |
|                     (*pgc->ops->FillSpans) (dst, pgc,
 | |
|                                             nPts, FirstPoint, FirstWidth, 1);
 | |
|                     ptsOut = FirstPoint;
 | |
|                     width = FirstWidth;
 | |
|                     nPts = 0;
 | |
|                 }
 | |
|                 EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
 | |
|                 EVALUATEEDGEEVENODD(pAET, pPrevAET, y);
 | |
|             }
 | |
|             miInsertionSort(&AET);
 | |
|         }
 | |
|     }
 | |
|     else {                      /* default to WindingNumber */
 | |
| 
 | |
|         /*
 | |
|          *  for each scanline
 | |
|          */
 | |
|         for (y = ET.ymin; y < ET.ymax; y++) {
 | |
|             /*
 | |
|              *  Add a new edge to the active edge table when we
 | |
|              *  get to the next edge.
 | |
|              */
 | |
|             if (pSLL && y == pSLL->scanline) {
 | |
|                 miloadAET(&AET, pSLL->edgelist);
 | |
|                 micomputeWAET(&AET);
 | |
|                 pSLL = pSLL->next;
 | |
|             }
 | |
|             pPrevAET = &AET;
 | |
|             pAET = AET.next;
 | |
|             pWETE = pAET;
 | |
| 
 | |
|             /*
 | |
|              *  for each active edge
 | |
|              */
 | |
|             while (pAET) {
 | |
|                 /*
 | |
|                  *  if the next edge in the active edge table is
 | |
|                  *  also the next edge in the winding active edge
 | |
|                  *  table.
 | |
|                  */
 | |
|                 if (pWETE == pAET) {
 | |
|                     ptsOut->x = pAET->bres.minor;
 | |
|                     ptsOut++->y = y;
 | |
|                     *width++ = pAET->nextWETE->bres.minor - pAET->bres.minor;
 | |
|                     nPts++;
 | |
| 
 | |
|                     /*
 | |
|                      *  send out the buffer
 | |
|                      */
 | |
|                     if (nPts == NUMPTSTOBUFFER) {
 | |
|                         (*pgc->ops->FillSpans) (dst, pgc, nPts, FirstPoint,
 | |
|                                                 FirstWidth, 1);
 | |
|                         ptsOut = FirstPoint;
 | |
|                         width = FirstWidth;
 | |
|                         nPts = 0;
 | |
|                     }
 | |
| 
 | |
|                     pWETE = pWETE->nextWETE;
 | |
|                     while (pWETE != pAET)
 | |
|                         EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
 | |
|                     pWETE = pWETE->nextWETE;
 | |
|                 }
 | |
|                 EVALUATEEDGEWINDING(pAET, pPrevAET, y, fixWAET);
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              *  reevaluate the Winding active edge table if we
 | |
|              *  just had to resort it or if we just exited an edge.
 | |
|              */
 | |
|             if (miInsertionSort(&AET) || fixWAET) {
 | |
|                 micomputeWAET(&AET);
 | |
|                 fixWAET = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      *     Get any spans that we missed by buffering
 | |
|      */
 | |
|     (*pgc->ops->FillSpans) (dst, pgc, nPts, FirstPoint, FirstWidth, 1);
 | |
|     free(pETEs);
 | |
|     miFreeStorage(SLLBlock.next);
 | |
|     return TRUE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *  Draw polygons.  This routine translates the point by the origin if
 | |
|  *  pGC->miTranslate is non-zero, and calls to the appropriate routine to
 | |
|  *  actually scan convert the polygon.
 | |
|  */
 | |
| void
 | |
| miFillPolygon(DrawablePtr dst, GCPtr pgc,
 | |
|               int shape, int mode, int count, DDXPointPtr pPts)
 | |
| {
 | |
|     int i;
 | |
|     int xorg, yorg;
 | |
|     DDXPointPtr ppt;
 | |
| 
 | |
|     if (count == 0)
 | |
|         return;
 | |
| 
 | |
|     ppt = pPts;
 | |
|     if (pgc->miTranslate) {
 | |
|         xorg = dst->x;
 | |
|         yorg = dst->y;
 | |
| 
 | |
|         if (mode == CoordModeOrigin) {
 | |
|             for (i = 0; i < count; i++) {
 | |
|                 ppt->x += xorg;
 | |
|                 ppt++->y += yorg;
 | |
|             }
 | |
|         }
 | |
|         else {
 | |
|             ppt->x += xorg;
 | |
|             ppt++->y += yorg;
 | |
|             for (i = 1; i < count; i++) {
 | |
|                 ppt->x += (ppt - 1)->x;
 | |
|                 ppt->y += (ppt - 1)->y;
 | |
|                 ppt++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if (mode == CoordModePrevious) {
 | |
|             ppt++;
 | |
|             for (i = 1; i < count; i++) {
 | |
|                 ppt->x += (ppt - 1)->x;
 | |
|                 ppt->y += (ppt - 1)->y;
 | |
|                 ppt++;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (shape == Convex)
 | |
|         miFillConvexPoly(dst, pgc, count, pPts);
 | |
|     else
 | |
|         miFillGeneralPoly(dst, pgc, count, pPts);
 | |
| }
 |